

Hermes ransomware distributed to South
Koreans via recent Flash zero-day

March 14, 2018 by Malwarebytes Labs

This blog post was authored by @hasherezade, Jérôme Segura and Vasilios Hioureas.

At the end of January, the South Korean Emergency Response Team (KrCERT) published
news of a Flash Player zero-day used in targeted attacks. The flaw, which exists in Flash Player
28.0.0.137 and below, was distributed via malicious Office documents containing the embedded
Flash exploit. Only a couple of weeks after the public announcement, spam campaigns were
already beginning to pump out malicious Word documents containing the newly available
exploit.

While spam has been an active distribution channel for some time now, the news of a Flash
exploit would most certainly interest exploit kit authors as well. Indeed, in our previous blog post
about this vulnerability (CVE-2018-4878), we showed how trivial it was to use an already
available Proof-of-Concept and package it as as a drive-by download instead.

https://blog.malwarebytes.com/author/malwarebyteslabs/
https://blog.malwarebytes.com/author/malwarebyteslabs/
https://www.krcert.or.kr/data/secNoticeView.do?bulletin_writing_sequence=26998
https://www.krcert.or.kr/data/secNoticeView.do?bulletin_writing_sequence=26998
https://blog.malwarebytes.com/cybercrime/2018/02/new-flash-player-zero-day-comes-inside-office-document/
https://blog.malwarebytes.com/cybercrime/2018/02/new-flash-player-zero-day-comes-inside-office-document/
https://blog.morphisec.com/flash-exploit-cve-2018-4878-spotted-in-the-wild-massive-malspam-campaign
https://blog.morphisec.com/flash-exploit-cve-2018-4878-spotted-in-the-wild-massive-malspam-campaign
https://blog.morphisec.com/cve-2018-4878-an-analysis-of-the-flash-player-hack
https://blog.malwarebytes.com/wp-content/uploads/2018/02/Flash_0_day.gif
https://blog.malwarebytes.com/wp-content/uploads/2018/02/Flash_0_day.gif

On March 9th, MDNC discovered that a less common, but more sophisticated exploit kit called
GreenFlash Sundown had started to use this recent Flash zero-day to distribute the Hermes
ransomware. This payload was formerly used as part of an attack on a Taiwanese bank and
suspected to be the work of a North Korean hacking group. According to some reports, it may
be a decoy attack and “pseudo-ransomware“.

By checking on the indicators published by MDNC, we were able to identify this campaign within
our telemetry and noticed that all exploit attempts were made against South Korean users.
Based on our records, the first hit happened on February 27, 2018, (01:54 UTC) via a
compromised Korean website.

We replayed this attack in our lab and spent a fair amount of time looking for redirection code
within the JavaScript libraries part of the self hosted OpenX server. Instead, we found that it was
hiding in the main page’s source code.

We had already pinpointed where the redirection was happening by checking the DOM on the
live page, but we also confirmed it by decoding the large malicious blurb that went through
Base64 and RC4 encoding (we would like to thank David Ledbetter for that).

Hermes ransomware

The payload from this attack is Hermes ransomware, version 2.1.

Behavioral analysis

The ransomware copies itself into %TEMP% under the name svchosta.exe and redeploys itself
from that location. The initial sample is then deleted.

https://malware.dontneedcoffee.com/2018/03/CVE-2018-4878.html
https://malware.dontneedcoffee.com/2018/03/CVE-2018-4878.html
https://blog.trendmicro.com/trendlabs-security-intelligence/new-bizarro-sundown-exploit-kit-spreads-locky/
https://blog.trendmicro.com/trendlabs-security-intelligence/new-bizarro-sundown-exploit-kit-spreads-locky/
http://baesystemsai.blogspot.ca/2017/10/taiwan-heist-lazarus-tools.html
http://baesystemsai.blogspot.ca/2017/10/taiwan-heist-lazarus-tools.html
https://securingtomorrow.mcafee.com/mcafee-labs/taiwan-bank-heist-role-pseudo-ransomware/
https://twitter.com/ledtech3
https://twitter.com/ledtech3

The ransomware is not particularly stealthy—some windows pop up during its run. For example,
we are asked to run a batch script with administrator privileges:

The authors didn’t bother to deploy any UAC bypass technique, relying only on social
engineering for this. The pop-up is deployed in a loop, and by this way it tries to force the user
into accepting it. But even if we don’t let the batch script be deployed, the main executable
proceeds with encryption.

The batch script is responsible for removing the shadow copies and other possible backups:

It is dropped inside C:\Users\Public along with some other files:

The file “PUBLIC” contains a blob with RSA public key. It is worth noting that this key is unique
on each run, so, the RSA key pair is generated per victim. Example:

Another file is an encrypted block of data named UNIQUE_ID_DO_NOT_REMOVE. It is a blob
containing an encrypted private RSA key, unique for the victim:

Analyzing the blob header, we find the following information:

● 0x07 – PRIVATEKEYBLOB
● 0x02 – CUR_BLOB_VERSION: 2
● 0xA400 – ALG_ID: CALG_RSA_KEYX

The rest of the data is encrypted—at this moment, we can guess that it is encrypted by the RSA
public key of the attackers.

The same folder also contains a ransom note. When the encryption finished, the ransom note
pops up. The note is in HTML format, named DECRYPT_INFORMATION.html.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa387453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375549(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375549(v=vs.85).aspx

The interesting fact is that, depending on the campaign, in some of the samples the authors
used BitMessage to communicate with victims:

This method was used in the past by a few other authors, for example in Chimera ransomware,
and by the author of original Petya in his affiliate programs.

Encrypted files don’t have their names changed. Each file is encrypted with a new key—the
same plaintext produces various ciphertext. The entropy of the encrypted file is high, and no
patterns are visible. That suggests that some stream cipher or a cipher with chained blocks was
used. (The most commonly used in such cases is AES in CBC mode, but we can be sure only
after analyzing the code). Below, you can see a visualization of a BMP file before and after

https://wikipedia.org/wiki/Bitmessage
https://wikipedia.org/wiki/Bitmessage
https://blog.malwarebytes.com/threat-analysis/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/
https://blog.malwarebytes.com/threat-analysis/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/

being encrypted by Hermes:

Inside each file, after the encrypted content, there is a “HERMES” marker, followed by another
blob:

This time the blob contains an exported session key (0x01 : SIMPLEBLOB) and the algorithm
identifier is AES (0x6611: CALG_AES). We can make an educated guess that it is the AES key
for the file, encrypted by the victim’s RSA key (from the generated pair).

https://msdn.microsoft.com/en-us/library/windows/desktop/aa387453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375549(v=vs.85).aspx

The ransomware achieves persistence by dropping a batch script in the Startup folder:

The script is simple; its role is just to deploy the dropped ransomware: svchosta.exe.

So, on each system startup it will make a check for new, unencrypted files and try to encrypt
them. That’s why, as soon as one discovers that they have been attacked by this ransomware,
they should remove the persistence entry in order to not let the attack repeat itself.

Inside the ransomware

Execution flow

At the beginning of the execution, the ransomware creates a mutex named “tech”:

The sample is mildly obfuscated, for example, its imports are loaded at runtime. The .data
section of the PE file is also decrypted during the execution, so, at first we will not see the
typical strings.

