LockCrypt ransomware: weakness in code
can lead to recovery

April 4, 2018 by Malwarebytes Labs

At the start of the year, it seemed that 2018 was going to be all about cryptominers. They so
overwhelmingly dominated the landscape that it looked like no other threat had a chance.
However, ransomware is not giving up the field so fast. There have been new variants popping
up every couple of months, peering rather shyly around the corner.

At the moment, the most popular ransomware is GandCrab. However, a lesser-known family
called LockCrypt has been creeping around under the radar since June 2017. Since it is spread
via RDP brute-force attacks that must be manually installed, it has never been a massive
threat—and therefore had never been described in detail.

But recently we were contacted by some victims of LockCrypt, so we decided to take a closer
look. Our investigation led to some interesting findings, especially when we discovered that the
ransomware authors decided to ignore popular advice not to roll your own crypto. As we could
easily guess, it introduced weaknesses to the code, along with the possibility to recover the data
in some cases.

https://blog.malwarebytes.com/author/malwarebyteslabs/
https://blog.malwarebytes.com/author/malwarebyteslabs/
https://www.bleepingcomputer.com/forums/t/648384/lockcrypt-lock-support-topic-readmetxt/

Analyzed sample

99a3d049f11474fac6844447ac2da430

Behavioral analysis

In order to execute properly, the malware must be run as an Administrator. Due to the fact that it
is deployed manually by attackers, it doesn’t use any tricks or exploits to automatically elevate
its privileges.

Once it is run, it deletes the original sample and drops itself in C:\Windows under the name
wwvcm.exe:

b Local Disk (C:) » Windows »

Mew folder
Marne Date modified Type Size
5 wwvem.exe 2018-02-05 23:32 Application 13 KB

It also adds persistence using a registry key:

Autorun Ertry Description Image Path
ﬁ} HELMSOFTWARE \Microsoft " Windows NTCumrent Version' Winlogon.Userninit
Wl =] e \Windows'wwvem exe o windowswwwom exe

This ransomware encrypts all the files it can possibly reach. During the process, it enumerates
and tries to terminate all running applications so that they will not be blocking access to the
attacked files. Executables are also attacked.

|| ejwtGnhKSBVRzIFAKKDSnYweEMpBQ== ID YARASU473R6T35c7 1btc 1BTC File 140 KB
|| ejwtGnhKSBVRzIFAkkG Sjwnd EM3BSISK1tyWkQ2)SkIBHFbdBJfRmO-GVUsEzUKKB3Qw== ID YBRASU473R6T35c7 1btc 1BTC File 140 KB
|| ejwtGnhKSBVRzIFAkKG SjundkM2BTOS)IszWgBINSI0B Gk ID YERASU4TIRET35cT 1btc 1BTC File 140 KB
= Restore Files.TxT Text Document 2KB

The names of the encrypted files are obfuscated—first encrypted and then converted to base64.
The random ID is also a part of the name. The extension used is ‘1btc’.

The ransom note is dropped as a TXT file:

https://www.virustotal.com/#/file/67c7b46aed4f9b505b492b700839609c39f05ac60c58fe320eca69316fe3a06c/community

File Edit Format View Help

vour ID YBRASU473R6T35¢7

A1l your files have been encrypted due to a security problem with your pC. If you want to restore them, write us to the e-mail support: dyamol@aol.com or dyamol@bitmessage.ch
write this ID in the title of your message

In case of no answer in 24 hours write us to theese e-mails support: dyamol@aol.com or dyamol@bitmessage.ch

vou have to pay for decryption in Bitcoins. The price dependson how fast you write to us. After payment we will send you the decryption tool that will decrypt all your files.
Free decryption as guarantee

gefore paying you can send us up to 3 files for freedecryption. The total size of files must be less than 10Mb(nonarchived), and files should not contain valuable information.
(databases,backups, large excel sheets, etc.)

How to obtain Bitcoins

The easiest way to buy bitcoins is Localgitcoins site.vouhave to register, click 'Buy bitcoins’, and select the sellerbypayment method and price.

https://localbitcoins. com/buy_bitcoins

Also you can find other places to buy Bitcoins andbeginnersguide here:

http://www. coindesk. com/information/how-can-i-buy-bitcoins/

Attention!

Do not rename encrypted files.

Do not try to decrylf:t your data using third party software,it may cause permanent data loss.

pecryption of your files with the help of third parties maycause increased price (they add their fee to our) or you can becomea victim of a scam.

Which pops up at the end of the execution.

Looking inside the encrypted files, we saw that they have pretty high entropy. The example
below shows a BMP file before and after encryption:

Our initial assessment of the image was that the authors didn’t use a trivial XOR here. It may
also look like a file encrypted by stream ciphers (or any ciphers in CBC mode). After looking
inside the code, we will know more about it.

Looking at the changes made in the registry, we found more data left there by the ransomware,
such as the unique ID of the victim:

https://speakerdeck.com/hshrzd/virus-bulletin-2016-challenges-and-approaches-of-cracking-ransomware
https://speakerdeck.com/hshrzd/virus-bulletin-2016-challenges-and-approaches-of-cracking-ransomware

£ Hacked | REG_SZ B6Z7TLILIECNXPQ

{'iiLegaINDticeCaptinn REG_5Z Attention!!! Your files are encrypted !!!

1‘_','_1'\; LegalMoticeT ext REG_SZ To recover files, follow the prompts in the text file "Restore Files”
i’-'ﬁ] PasswordExpin/\Warning REG_DWORD 000000005 (5)

3__'3] PowerdownifterShutdown REG_SZ 0

.a,h} PreCreateKnownFolders REG_SZ {AS20A1 A4 -1780-4FF5-BD18-167343C5AFLG}

ab| ReportBootOk REG_SZ 1

ab) scremoveoption REG_SZ 0

ab) Shell REG 57 explorer.exe

f-'{i ShutdownFlags REG_DWORD 0xBO00002T (2147483687)

1‘_','_1'\; ShutdownWithoutLogon REG_SZ i

ah Userinit REG_5F ChWindows\systern32huserinit.exe, c\Windowshwwwom.exe,
ab|YMApplet REG_SZ SystemPropertiesPerformance.exe /pagefile

?P} WinStationsDisabled REG_SZ i

wtery HEEY LOCAL MACHINENSOFTWARE\Microsoft\Windows NT\CurrentWersion\Winlogon

Network communication

The malware is capable of encrypting without an Internet connection. However, if we run it on a
connected machine, it beacons to its CnC. The CnC IP is 46.32.17.222 (located in Iran).

Here’s a fragment of the communication:

WThSQVNVNDczUjZUMzVjNycsJidpbmRvd3MgNyBQemamZ XNzawauYWx8dGVzdGVy FEMEXFVzZZXJzXHR1c3R1cIXEZXN =
rdGoOwxXGxvY2t jecnlwdC51leGU=

/80.Q47XBPX..:".*,BcO>+...].....+E08.XY.F+<.$

.F.ObE.GA...-A.=0.6/.ED&. .K>- bQ.eQ_\.+A...37ZBQ.3E).Z..B./

@9.<.;7.3A&Mb. .DOCE. .b._?...V#.%./I.Uc:."C...ZaAN.A, ..?, NXK.Q.

< uaH]

\9'/ Kc*...<W?.2M?.a=E.,E.?B.KP..+..[.:-/W*. .8bG<Y&N: .&...IW.0.$!G#SR[&BJI.#0.(9.5.AXF. .6LP.
G.H@&....L.?..(.ID=4X._@P.7R. ..c "K>E9..6.a%M..Q.IcX, 9R. [

IRITS.ALS. .. .6/:=. 2AZ(7,\8J28....c7J.AU."@,B@.F5.7.".\4:)...
1..8[.71E.:."'.X.<7.ADH5...aB.<5.CIB..Q.>DT5.W..F9. .FASA. .SK8.4.3\3M, @4NQ; . .MK.B?+3.JK.:

(2LYA<DO%. A

The bot sends base64 encoded data about the attacked machine, such as the random ID,
username, operating system, and the path from where the malware was deployed. Example:

WThSQVNVNDczUjZUMzVjNycsJ1dpbmRvd3MgNyBQcm9mZXNzaW9OuYWx8dGVzdGVyfEM6
XFVzZXJzXHRIc3RICIXEZXNrdGOwXGxvY 2tjcnlwdC5leGU=

Decodes to:

Y8RASU473R6T35c7','Windows 7 Professional|tester|C:\Users\tester\Desktop\lockcrypt.exe

https://www.abuseipdb.com/whois/46.32.17.222
https://www.abuseipdb.com/whois/46.32.17.222

The server sends back a block of bytes, which looks like some random or encrypted data. Its
exact role we will find out by looking into the code.

Inside the code

The sample is not packed by any external crypter, nor is it obfuscated. Once we open it, we can
directly see all that it has inside.

void noreturn start()

{
DWORD ThreadId; f/ [sp+8h] [bp-4h]E1

SetErrorMode{1u);

WiAsStartup(Bx181u, &stru L4O5848);

check wwucm(};

adjust_token();

CreateThread(@, @8, searching_processes, B, B, &Threadld);

registry read();

if { should encrypt t= 1)}

{
socket communicate();
encrypt_drives();

e

vhile { dword 484884)
5leep(1888u);

encryption_done = 1;

popup_note();

ExitProcess{@);

At the beginning, the ransomware checks the folder from which it is running. It tries to make a
copy in the Windows folder and redeploys itself from that location.

Then, it creates a thread that continuously enumerates all the running processes and tries to
terminate them.

It reads the registry to check if it was already deployed. Finding the appropriate keys can stop
the infection—the malware will recognize the machine as already attacked. Otherwise, it will
proceed further.

Encryption
The infection starts from the attempt to communicate with the CnC.

Looking inside this function, we could now understand the role of the mysterious buffer of bytes
seen during the behavioral analysis. The downloaded buffer is validated by its CRC32
checksum. Then, it sets in a global variable for the further use of the encryption routine.

uly = 25884;
while { 1)
{
)5 = recu(s, v3i, vk, B8);
vl += u5;
if (fuS || viB »= Bx61AC)
break;
vl = 25884 - vil@;
3 = &buf[vid];

H
if { v18 < B%61AC || {chec

um = crc32{buf + 4, 250808), downl_buf = {_DWORD =*){u8 - 4), =downl_buf ?t= checksum

{
LABEL_18:
closesocket{s});
WiACleanup();
result = set_scramble buffer{{int)buf);
¥
else

b_ScramhleBuF = (int){downl buf + 1});
closesocket({s};
result = WSACleanup();
K
return result;
H

It turns out that this buffer is like a pad used for the encryption schema. The authors probably
wanted to achieve something like a one-time-pad encryption. However, they reused the buffer,
and because of this, they made their algorithm vulnerable for a plain text attack.

If for some reason downloading the buffer from the Internet is not possible, it is generated by a
simple, pseudo-random algorithm:

https://en.wikipedia.org/wiki/One-time_pad

M=

A8481F9C
ae4a1Foc
aa4B81Foc
aaue1Fn1
Aa481Fn3

call
or
jnz

get next byte:

generate_random
al, al
short loc_4B81FA7

[l s 55

[l sl =]
ee4B1FAS jmp

short get_next byte

aaue1Fny

ot s =

aaLa1FAA
Basa1FnB
BaLA1FBA
Aa4a1FB1
Aa4a1FB1
Aa4a1FB1

eax
lo_ScrambleBuf, eax

pop
mouy
leave
retn
set_scramble buffer endp

A8401FA7 loc_ 4@1FA7:
AB481FA7 stosb
88481FA8 loop get_next_byte

The authors did not make the best choice for the random generator. Rather than using a
cryptographically strong one, they went for the GetTickCount function.

Looking inside the encryption routine, we can see that the file is scrambled by a pretty simple

function:

rs |FUSH EEF
BEad4Aa17A4 (] . MOl EEF,.ESF
BA4E17AE (] . MOL ECK, [ARG.21
BE4817A9 (] . SHR ECH,EuZ
Aa4a17AC (] . SHL ECH, 1
B8a4817AE |] . HMOL EEX,DWORD FTR DS: [BR4E85644] scrambl ing_buffer
Ba4Ea1vEd (] . MOL ED . EBX
BE4E1TEES (] . AOD EBX, Bic1AS
BE4E1FEC (] . Mo ESI.CARG. 11
BA4E1TFEF (] . Moy EDILESI
BE4A17C1 B CLO
EE4E17C2 | » |FLODS DWORD PTR DS:LCESI]
Aa4aivCs (] . #OR ERX,OWORD PTR DS5:[EDX]
Ba4817CE (] . STOS DWORD PTR ES:CEDIJ
BE4E1ITFCE (] . DEC ESI
BE4E1FCTE (] « DEC EDI
AR4A1ITFCE (] . DEC ESI
BA4ALIFCT (] . DEC EDI
BA4E17CAH (] . AOD EDG, Emd
BE4817C0 (] . CHF EDX, EBX
AE4E1FCF (] o || JHE SHORT lockcrup. 88481707
Ba481701 & MOL EDX, OWORD PTR DS: [B8x485644] scrambl ing_buffer
BE4E1F07 (] #+ |RLOOFD SHORT lockcryp.@@4817c2
BE4E1709 (] . MOY ECH, [ARG. 21
AE4E1FOC (] . SHR ECH, 8uZ
BE4E1F0F (] . MaW EBX,.OWORD PTR DS5: [E-4ESE4] scramb L ing_buffer
BA4E17ES (] . MO EDX,. EBE
BE4817ET (] . AOD EBX, Buc1AS
aa4ai7ED (] . Mol ESI,.[ARG. 11
aa4a1vFa (| . MOy EDILESI
BE4E1FFZ (] « CLO
BR4E1FFS || > LODS OWORD PTR DOS:CESI]
BE4E1FFS (] . ROL ERH, B85
BA4ELTFET (] . #OR ERX,OWORD PTR DS:LCEDR]
BA4E17FS (] . ESWAF ERX
BE4817FE (] . STOS OWORD PTR ES:CEDI]
Ba4a1i7FC (] . ROD EDi<, Gmd
Ba4817FF (] . CHMF ED, EEX
BE4E1gE1 o || JHE SHORT lockcoryp. DE4812383
BE4E1863 (] . Mol EDx, OWORD PTR D5: [E94E5EA44]
ARdE1ga9 (] ¥ |RLOOPD SHORT lockcryp.BE4E17FS
BR4E1Z6E (] . LERLIE
apanizac |L; | RETH ous
P =
05: [BA4REAdd 1-RBRZC3FSA
Lo =2 A A
Hddress |Hex dump HSCII
BEZCIFEE[22 B5 B2 34|55 Z1 51 BA|@2 1B 43 51|54 12 2B @7 2484016, +COTH+,
BEZCIF?A(2F 1F 47 24|82 18 @1 3B|AC 59 @7 40| A5 49 26 61(~TESekE; . Y-MEILa
BEZCIFAA(52 40 33 37|50 58 55 6@| 2E @1 5F SA|AF 1F A9 57 Ama=mFioou™ -G 7
BEZCIFEA| 27 47 19 IC| A2 E1 68 18|26 23 48 15[11 5E 4C 25| " Gdoteca™ FEHEE4 L]
BEZCIFCA(AD 13 B9 B5(SE 35 62 45|26 63 132 B85 2E @59 14 82(.UYL[SBEEcIS, . T0
BEZCIFOB(5A 28 I1C SA(24 @0 1A 52|20 10 2C 42| 2E ZB 1B 59| 20824, +xHu#, T, +4+Y
BEZCSFER| 14 13 28 43 1C 16 20 80| AE 57 2B 57| 4B 52 &2 13 M Cobk+. AW+WKRb4
BEZCIFFE(49 2A 8BS 19|20 45 41 39|52 66 68 SE[AC B8 BE 19| I#44:EASRs~—~ 404
BRZC4aa@(a0 22 45 @2 37 52 62 56|48 5C &1 18| 5F 4B E5 23| . "FATRcUH-ak_Klg
BRzZC4a1@|(4F 31 28 36|17 BS 4C 47|55 46 2B 38|45 23 EE 4F| 01 A#LGUF+BE#UD

The scrambling algorithm has two different rounds. The reconstructed code of both rounds can
be seen below.

Round 1

void lockcrypt::levell crypt(void *buf, size t buf size, void *key, size t
key size)

{

size t dwsize buf size >> 2;

for (size t i =4, k = 0; 1 < buf_size - 6; 1 += 2, k +=4) {
if (k > KEY_SIZE) {

)

}
DWORD *dwlist = (DWORD *) ((ULONGLONG)buf + i);

DWORD *keydw = (DWORD *) ((ULONGLONG)key + k);

DWORD inp = *dwlist;
DWORD out = inp ~ (*keydw);
(*dwlist) = out;

view raw lockcrypt_round1.cpp hosted with ® by GitHub

This round uses only XOR operation, but there is a twist that prevents you from recovering the
original key. Although the DWORD from the input is XORed with a DWORD from the key, the
input is also tainted with the previous output. On every step, the first half of the input DWORD is
taken from the previous output, while only the second half is fresh. That makes it a simple
stream cipher.

https://gist.github.com/hasherezade/781c18d902bbba023cef6a272c0b0624/raw/db8ad4e2b027d274e6718da067ab9c1437607a3a/lockcrypt_round1.cpp
https://gist.github.com/hasherezade/781c18d902bbba023cef6a272c0b0624#file-lockcrypt_round1-cpp
https://gist.github.com/hasherezade/781c18d902bbba023cef6a272c0b0624#file-lockcrypt_round1-cpp
https://github.com/
https://github.com/

Round 2

void lockcrypt::level2 crypt(void *buf, size t buf size, void *key, size t
key size)
{

size t dwsize = buf_size >> 2;

for (size t i = 4, k = 9; i < buf_size - 6; 1 +=
if (k > KEY_SIZE) {
k =0;
}
DWORD *dwlist = (DWORD *) ((ULONGLONG)buf + 1i);

DWORD *keydw = (DWORD *) ((ULONGLONG)key + k);

DWORD inp = *dwlist;

inp = rol32(inp, 5);

DWORD out = inp ~ (*keydw);
out = bswap32(out);
(*dwlist) = out;

view raw lockcrypt_round2.cpp hosted with ® by GitHub

This round looks more complicated—Not only is XOR operation used here, but also ROL and
bitwise swap. However, there is no input tainting this time, so it is easily reversible.

Those two simple rounds, together with the “pad” buffer that is 2,500 bytes long, were able to
generate the output with pretty high entropy.

https://gist.github.com/hasherezade/ed8366cf0fd007a2a416f2531d5251e4/raw/497f90943d27afbb888fd7a7af0689431cc9dd74/lockcrypt_round2.cpp
https://gist.github.com/hasherezade/ed8366cf0fd007a2a416f2531d5251e4#file-lockcrypt_round2-cpp
https://gist.github.com/hasherezade/ed8366cf0fd007a2a416f2531d5251e4#file-lockcrypt_round2-cpp
https://github.com/
https://github.com/

File names obfuscation

The names of the files are first XORed with the pad buffer, and then base64 encoded. The
offset of the XOR key is 1111 characters from the beginning of the buffer.

The part of code responsible for this:

BA4B15B1 movw [ebp+1lpWideCharStr], eax
Ag4815B4 mov edi, eax

8481586 mov ecx, [ebp+size]

88481589 mov esi, [ebp+1pString]
AO4B15BC mov edx, g _ScrambleBuf
Ague15c2 add edz, 11111

pe4e15ceE cld

Ll e =]
88401509

884815C? =or with name:
884815C9 lodsb

aa4P15CcA xor al, [edx]
AB4B15CE stosb
884815CD inc edx

884815CE loop ¥xor_with_name

e

88481508 mou [ebp+lpHultiByteStr], edi
88481503 mov charset_end, '-°

8a4815DA push [ebp+size]

884815DD push edi

A84815DE push [ebp+lpWideCharStr]
A84815E1 call basefls encode

Conclusion

LockCrypt is an example of yet another simple ransomware created and used by
unsophisticated attackers. Its authors ignored well-known guidelines about the proper use of
cryptography. The internal structure of the application is also unprofessional.

Sloppy, unprofessional code is pretty commonplace when ransomware is created for manual
distribution. Authors don’t take much time preparing the attack or the payload. Instead, they’re
rather focused on a fast and easy gain, rather than on creating something for the long run.
Because of this, they could easily be defeated.

