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Abstract

This paper describes a model for detecting the existence of computer viruses in real-time.



1 Background

Protection technologies in common use [5] are capable of preventing corruption by viruses
(e.g. through mandatory access control), detecting known viruses (e.g. by searching for
them), detecting specific types of corruption as it occurs (e.g. trapping the modification of
executable files in certain ways), and detecting corruption before it causes significant damage
(e.g. through cryptographic checksums in integrity shells), but some points must be made
concerning their limited capabilities.

e Any system that relies solely on access control to prevent corruption is no more secure
than the individuals or policies allow it to be. Even though sound access control
policies against viruses exist, the vast majority of current systems do not implement
these controls, and even if these controls are in place, current implementations are
imperfect. Even the most sound access control techniques only limit the extent of
transitive spread. [2]

e The use of known virus detection schemes doesn’t detect viruses unknown to the writer
of the defense. New viruses cannot be detected with this technique, and the time and
space required for detection grows with the number of viruses.

e Trapping attempts to modify executable files and other similar techniques don’t detect
viruses corrupting non ‘executable’ forms, corruption through the use of unusual input
parameters, or corruptions in forms other than those sought. They also prevent normal
system development activity under some circumstances and are thus of only limited
applicability. [5]

e In order for integrity shells to be ideal in an environment with change, we must have
some measure of the legitimacy of change. This cannot be effective without some
understanding of intent. [3]

Two of these virus detection techniques are posteriori in that they are ineffective until
after a corruption occurs. In the case of an integrity shell, detection occurs after ‘primary’
infection, and is capable of preventing ‘secondary’ infection. In the case of known virus de-
tection techniques, detection doesn’t normally occur until some human has detected damage,
traced it to a cause, and designed a method for detecting the cause. The a-priori technique
of trapping unusual modification behavior is quite weak in that it covers only a small portion
of the possible viruses. Access control techniques don’t detect viruses, but only attempt to
limit their transitive spread.

Several attempts have been made to find techniques which will reliably differentiate
programs containing viruses from other programs by examination, dispite the widely know
result that this problem is undecidable [1]. Syntactic analysis has been attempted by several
authors [9] [11] [16] [17] but none of these have a sound theoretical basis and all result
in infinite numbers of false positives and false negatives. In general, the problem of virus



detection is undecidable, and as we would therefore expect, in the most comprehensive study
published to date, a 50% false positive and 50% false negative rate was demonstrated [9]. The
use of evolutionary and self-encrypting viruses clearly demonstrates the futility of syntactic
analysis [4], and virus attackers are now commonly applying this technique.

An alternative approach is to try to differentiate between ‘legitimate’ and ‘illegitimate’
behavior by somehow modeling intent. One way to do this is by building up a set of expec-
tations about the behavior of programs and detecting deviations from those expectations. A
closely related research result that may be helpful in understanding the present work is ‘rov-
ing emulation’ [6] which has been proposed and simulated as a technique to detect faults at
run-time. Results on error latency have shown that effective protection can be attained with
sufficient roll-back capability. Other antivirus researchers have also used heuristic approaches
for run-time detection of virus-like activities [18] with substantial success.

In the remainder of this paper, we shall consider the concept of detecting behavioral
changes in some more depth. We begin by providing a mathematical model of program ex-
ecution and describing the difference between legitimate and illegitimate program behavior
based on behavioral expectations. Next we describe some of the difficulties in applying this
model to a practical situation by showing the complexity associated with simplistic applica-
tion of the model and some of the risks associated with less accurate implementations which
eliminate complexity in exchange for accuracy. We then describe some lines of research that
seem to have hope for providing adequate accuracy while maintaining reasonable complexity.
Finally, we summarize results, draw conclusions, and propose further work.

2 Some Formalities

We commonly refer to computer programs, and by that term, we intend to indicate a trans-
formation of the form [15]:
P:=(1,0,S,f:1xS— (57,0))

where:
Z=A1,...,00} The integers
I={ip,...,im},meT The input symbols
O ={og,...,0n},neT The output symbols

S =5%={sp,...,8},p €T The internal (next) states

We also define I'* as the set of all possible input sequences (the Kleene closure of I)
and the ‘histories” H of a Moore machine as the output and state sequences generated by
applying I* to the machine from each possible initial state.

A program executing in an undesirable manner, by definition, has some undesired execu-
tion behavior, in that it produces undesirable outputs O or ‘next states’ S*. Since internal
program states may be observed during execution by program instrumentation, and dynamic
techniques exist to observe the propagation of program state errors [8, 13], we may be able
to create similar techniques to detect certain types of undesirable behavior.



Using the Moore model of computation, we could differentiate ‘expected’ and ‘unex-
pected’ behavior by instrumenting the state-space of a program as follows:

Before a virus modifies a program ‘P,’ in storage, P, has some functionality
fz. If a modified form of P, acts differently from the original, we have new
program P, with functionality f,, where f, # f, for at least one input sequence
(Ie I*). As P, executes, and I is provided as the input sequence, f, must produce

an internal state s, and/or output sequence O, that differs from those of P, under
input I (i.e. s, # s, or O, # O,).

Similarly, a ‘parameter altering’ corruption may corrupt the behavior of a program P,
which normally operates on a subset D, of all the possible inputs (D, C I*) by forcing it to
operate on a different subset (D,) of inputs.

When some input sequence in a set D, is provided to P,, we observe a mod-
ified history denoted by Hp, , where Hp, # Hp, and Ad € D,,d € D,. Any
differences between Hp, and Hp, signal an unanticipated application of P.

The analogy between corruptions caused by computer viruses or other malicious attacks
and program state errors caused by random faults or mistakes is the basis of this paper.
In this model, we detect corruption in real-time before the corruption propagates. This has
several advantages in non-viral attacks as well. For example, a common method for bypassing
access control is by providing unexpected input parameters to operating system calls in the
hope that the implementation fails to trap some condition and grants an inappropriate access.
Trojan horses pose similar problems in that they perform some unanticipated function under
some conditions. The same technique offers hope for detecting Trojan horses when they
become active and thereby preventing some of their effects.

In this model, we view an executing program as a series of dynamic state spaces that
are constantly being modified, instead of the conventional view of programs from as static
syntactic spaces. This is quite different from the previous efforts in virus detection, and
there is therefore some hope that this model will provide the basis for some form of rapid
real-time detection of unanticipated system activities. The problem with this model is that
for all but the most trivial of examples, the size of the state-space is enormous. The issue
that remains to be resolved is how to get the practical advantages of this technique without
the enormous time and space penalties inherent in its use.

3 Discussion

The model discussed here is of a deterministic Von Neumman computer in which a stream of
instructions is executed in order to effect a required transformation of the input to the output.



We consider the program state of the computer at a point in execution to include all of the
information necessary to restart the computation if the executing program is interrupted.
In a synchronous finite state machine model of computation, the state is specified as the
memory state of all of the memory registers of the machine and the current clock value (high
or low).

In practice, the state of a machine may not be that simple. In a timesharing system
with good process protection, the program state typically includes the state of all process
specific processor registers and all of the internal memory of the program. In a personal
computer without good protection, the state of a program may be far more complex, but is
almost always encoded as the entire memory and register state of the machine. For a more
accurate restart of a process, many other factors may be involved, including the state of
input and output ports and buffers, the disk state of the machine, the state of any mounted
devices, etc. We model all relevant state information as a set of variable/value pairings.
State information is presented as a finite set {p1, pa, ..., pn} where each p; is an ordered pair
(identifier, value), and where initial values may be indeterminate. For example:

{(a, 5), (b, 1), (¢, 300.2), (d, undefined), (pc, 3)}

might be part of the program state of a program with the four variables ‘a’, ‘b’, ‘c’, anc ‘d’,
immediately after executing statement 2 (‘pc’ in this case indicates the ‘program counter’
register). The variable a has the value 5, b has the value 1, and ¢ has the value 300.2.

The use of undefined means that at some point in the execution of the program the value
of d became indeterminate (i.e. no assertion can be made about its value at this point). If we
know only about the high level semantics of a program and do not wish to make assertions
about how the processor interprets instructions, an example of an indeterminate value would
be the value of a pointer after its storage has been freed.

For convenience, we may assume that all of the values associated with a given identifier
are of the same type. This is reasonable in the general case because we can assign each bit
of program state to a unique identifier, which will effectively make them the same type. The
program state domain, D, is constructed by taking all possible values of each component of the
program state at all instructions. To derive the history for any particular program execution
under any given input sequence, we can characterize each instruction in the executable
program in terms of its effect on the program state.

There are many methods for doing this, and for most modern computers, we can do this
very easily through the use of a hardware definition language and a simulator. For any single
input sequence, this is not particularly difficult, since in the worst case, we require only one
copy of the machine state for each instruction executed, and in most cases, each instruction
execution is simulatable in a fixed time. Thus the time and space required is at most linear
with the number of instructions executed.

The complexity problems start when we wish to characterize a large number of different
input sequences. For each input symbol, we have as many possible program executions as



there are symbols in I, and in general, for an n-step program execution sequence, we have
|I|™ possible executions. Assuming there are m bits of state information and that input
symbols require k bits to represent, we require m(2*") bits of state information. For any
non-trivial input set and program, this is enormous. For example, for a program with only
1 byte of state information and inputs of at most 1 byte each executing only 50 instructions
requires over 1 googol (10'%°) bytes of storage to characterize! !

In a real computer, external inputs can come at any of a large number of different times,
and the normal processing mechanism allows ‘interrupts’ which alter program execution
sequences between, or in rare cases during, instruction execution. Multiprocessing introduces
further uncertainties, particularly in DOS based computing environments where interprocess
interaction is truly arbitrary and uncontrolled. We simply cannot count on anything about
programs in these environments. Keeping the complexity issue in mind, we will press on in
the hope that we may eventually be able to collapse these very large numbers into manageable
and effective protection mechanisms.

4 Reduced Complexity Models

One way to collapse much of the state information associated with a program is to assume
that there is a separation between ‘program’ and ‘data’.

Let P consist of the set of m transitions > T = {t1,...,tm}. Let Atjyp,r,m represent the
program state that exists after executing instruction ¢; on the rth iteration of t; by input
x from domain(P), where domain(P) represents all ‘valid’input sequences to program P.
There may be other inputs on which P could execute that would cause undesired states. Let
g, Tepresent the number of times that instruction i; is executed by input x. Formally, D
is:

m Na,ty,

U U U Atk,P,r,x-

k=1 zedomain(P) r=1

The execution of a single program instruction may, in general, change any number of
components of the data state, resulting in an entirely new data state, but in practice, the
vast majority of transitions alter only a very small portion of the data state. As a sequence of
transitions in a program is executed by the computer, the initial program state is successively
transformed until the program halts or loops indefinitely.

D represents the expected internal state behavior of P (i.e. at any snapshot into the
execution of P, we should find the program state of P is identical to some program state in
D). If this does not occur, then P has created a program state that is not possible according

1(28)50 — 25650 > 10100
2a.k.a. instructions



to the domain(P). This signals that P is in a state that cannot be achieved by any input in
domain(P) and suggests that:

1. P has received an input that is not in domain(P), or
2. P has been altered by malicious code, or

3. The execution of P has not proceeded according to the model.

If P is receiving invalid inputs, it is not necessarily the case that a security violation has
occurred, however it is a situation that may require attention. It could be that some sensor
that sends inputs to P has failed. Or it could be that malicious code is sending perverse
input parameters to P. If the behavior of P has been altered, then we have a warning
that potentially malicious code has affected the internal behavior of P. A hardware failure,
modeling error, or implementation inaccuracy could also result in an equivalent result.

To assure that the program states that are being created are not being influenced by
malicious code, each program state created during execution needs to be checked against the
members of D. A theoretical algorithm for producing a warning that a program state has
been created that is not in D follows:

1. Create the set Dy, =

nE,tk

U U Atk,P,r,m
r=1

z€domain(P)

for each instruction ¢; in T. D;, contains every program state that could ever occur
after transition ¢;, given that the program input is in domain(P).

2. During the execution of P in its operational environment, insert probes after each
transition t; to sample the program states being created. Determine whether the
sampled program states are in Dy, . If they are not, produce a warning.

5 Building a Practical Virus Warning System

The cardinality of D is enormous, so it is infeasible to create and store every D;, . Even if
D were not so large, there may exist an input = for which n,,, is so large that D, cannot
be stored. This means that the theoretical algorithm is generally impractical, however there
are several ways in which the algorithm can be partially implemented. Since we are unable
to fully implement the algorithm, we must accept a risk of false negatives.

To partially implement the theoretical model, we have many options. We could, for
example, store a small random sample of D at a random sampling of instructions; but
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this would yield enormous numbers of false positives, since we could never hope to store a
substantial portion of D at any place, and thus the likelihood of an uncovered state would
be very high. A more directed approach might be to select the portion of the state to be
stored and places in the program at which to store and compare so that we know that certain
things are expected to be the case. This mechanism is provided in some computer languages,
in which invariants are specified by the programmer for the purpose of automating certain
aspects of program proofs [14].

Another approach is to limit ourselves to particular classes of attacks. For example, we
could identify specific instructions that computer viruses locate to attack executable code
and select those locations for performing tests. By assuming that each transition ?; in a
target program does not have an equally likely chance of being attacked, we can reduce the
search space. Another approach might be to use information content measures to identify
instructions or state space characteristics that are more or less likely to occur in the program
being analyzed, and identify executions wherein these characteristics are not followed for an
identifiable portion of the program execution.

The latter approach is particularly nice since we have to store only a very small amount
of data state information and evaluate a relatively simple metric in order to make a deter-
mination. Of course, the number of false positives and false negatives will depend heavily on
how tight the bounds of the program execution characteristics are, but then it is also quite
simple to alter the bounds by simply changing the metric for different applications.

If we are looking for particular types of attacks, we might also try to do a variant on
fault-tree analysis [7, 10]. We first determine a set of unacceptable output states (i.e. enu-
merate disastrous output states) and then we apply a dynamic technique termed propagation
analysis [8, 12, 13] to determine where program states can be created in the program text
that could result in the disastrous output states that we enumerated. The key to making
propagation analysis effective is the ability to simulate the internal behavior of viruses. As
an example, in a timesharing system we could identify places in the program where system
calls are made as a place where disastrous output could originate.

We do not pretend that this is trivial, but it can be made a lot simpler through additional
effort in the specification and requirements phases during software development. In a sense,
this is a preliminary “design-for-security” step. Applying propagation analysis provides a list
of source locations in which a disastrous internal program state could be created that could
propagate producing undesirable outputs. We then map the source locations to the object
instructions (i.e. find the instructions that execute the source locations identified as dan-
gerous). Next we add instrumentation instructions to generate samplings for D, s. During
normal execution, we place self-test instructions at these locations to detect variations.



6 Summary, Conclusions, and Further Work

We have briefly explored the possibility of using experimental analysis of program behavior
to differentiate between legitimate and illegitimate program execution, described some of
the complexity problems associated with this approach, and contemplated the possibility of
reducing that complexity to a reasonable level.

The general approach of detecting the intrusion by analyzing state information in exe-
cuting programs has the appeal that it could result in earlier detection than can be attained
through other general purpose techniques, while providing more generality than attack spe-
cific defenses. The concept lends itself to detecting a very broad range of attacks including
Trojan horses and viruses, attacks generated by unanticipated input sequences, and even
unintentional corruptions resulting from transient or permanent faults.

This research is still in a very early stage, and clearly we can only draw limited con-
clusions. Although the general problem of virus detection is undecidable, the problem of
characterizing known program behavior in a finite state environment is only exponential in
the number of instructions executed. Furthermore, the upper bound on state sequences is
far higher than we would expect in normal program execution and complete state transition
information may not be required to detect many program variations. The possibility of a
practical defense based on this idea is therefore still an open question.

A great deal of further work will be required to determine the feasibility of this line of
defense in practical environments. More specifically, tighter bounds on the complexity of
real program state spaces for particular classes of programs should be determined, and there
is a very real possibility that this will yield viable partial solutions. Several ideas have been
raised and analysis of these ideas may yield useful results, particularly for special classes
of programs such as those written in certain languages or those that compute particular
sorts of functions. There is also the possibility that programs generated from mathematical
specifications may provide particular analytical advantages in detecting improper execution
and that programs written with additional protection related information may yield far more
efficient defensive techniques based on this concept.
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