
- 2 7 -

Reprinted from the Proceedings of the 1990 SIGSMALL/PC Symposium on Small Systems published by ACM Press.

Adequacy of Checksum Algori thms for Computer Virus Detect ion

D o u g V a r n e y

K a n s a s Sta te U n i v e r s i t y

1.0 Introduction
Checksums, long used for random error detection in communica-
tions, is now being employed to detect changes for integrity
purposes. For example, checksums are being used for the
detection of computer viruses [POZ86]. The checksum algo-
rithrns for detecting random errors are not sufficient against an
entity that wishes to "fool" the checksum mechanism. This entity
wants to be able to insert a forgery in place of the original data
such that an unsuspecting user does not realize the forgery has
occurred. This paper describes checksum algorithms and features
of checksum algorithms to deter this type of forgery.

2.0 Checksums
A checksum, or digital signature, is any fixed length block
functionally dependent on every bit of the message, so that
different messages will have different checksums with a high
probability [DEN82]. A checksum is generated by a checksum
algorithm. Probably the most used checksum algorithm family is
that of Cyclical Redundancy Codes (CRC) which are used
extensively in communication. General checksum algorithms,
such as the CRCs must produce checksums with the following
features:

1) Even mapping - the probability of producing any
checksum is approximately equal to generating any
other checksum. Given a checksum of n bits this
probability is equal to 2**(-n).

2) Permutation Sensitivity - different ordering of data
items within a data set produce different checksums.
I.e. the checksum of ABC produces a different check-
sum than ACB.

3) Overdeterminism - the checksum is functionally
dependent on every bit of the data being checksummed.
If this were not the case then errors in the bits of the
data which did not affect the checksum would be

undetected.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1990 A C M 0 8 9 7 9 1 - 3 4 7 - 7 / 9 0 / 0 0 0 3 / 0 2 8 0 $1 .50

These features are sufficient for random errors or random bursts
of errors, but are not sufficient for an active attacker who
introduces calculated nonrandom errors.

3.0 Attacks Against Checksums
An attacker defeats a checksum algorithm, f(s,d)=c where s is the
seed, d is the data, and c is the checksum by determining a set of
data, D', to insert in place of the original data, D, such that the
checksum of D and D' are equal: f(s,D) = f(s,D') There are three
general attacks against checksums: brute force, birthday, and trap
door.

Brute Force Attack
A brute force attack involves generating many different sets of
data and corresponding checksums until a match with the
checksum of the original data is found. Typically only a small
portion of the original data is changed in order to maintain the
functionality of the original data. The last block of the changed
data is mutated until the proper checksum is found. With even
mapping, the probability of generating a checksum, with any
single mutation, that matches the original data is 2**(-n). It is
necessary to generate ln(2) * 2**n mutations before there is a
50% probability of a successful attack. For example, for a 16 bit
checksum approximately 40,000 mutations are necessary before
there is a 50% chance of success.

Birthday Attack
The birthday atttack is a forgery accomplished by the originator of
the data. This attack involves generating and storing many
variations of a original set of data and corresponding checksum
and many variations of the set of data and corresponding
checksums to be inserted. Since any pair of original data and
forged data provides a successful forger), the number of variations
needed to be generated is greatly reduced. A birthday attack will
succeed by producing a forgery 50% of the time after 2"*(n/2)
checksums. The standard birthday attack can only be accom-
plished by an attacker which has access to Lhe original data before
it is originally checksummed.

- 2 8 -

Trap Door Attack
A trap door is essential a short cut to determine a set of data to
insert as a forgery. If an algorithm exists to determine a set o f
data that generates the same checksum and requires less computa-
tional effort than a brute force attack, then a trap door exists.

4.0 Features for protect ion against attackers.
The two basic features to protect against attackers are the length
of the checksum and the noninvertablity of the checksum
algorithm.

Length of the Checksum.
The length of the checksum is its the number of bits in the
checksum. The checksum should be of sufficient length such that
the cost of generating enough variations in a brute force attack is
unacceptably high to the attacker and, ff necessary, provide
protection against birthday attacks. A 32 bit length checksum
provides adequate protection from brute force attacks while 128
bit length checksum is necessary to provide protection from
birthday attacks [JUE86].

Noninvertable Algor i thm
A noninvertable checksum algorithm is a function that cannot be
inverted. Thus given a checksum algorithm, f(s,d)=c there does
not exist either a function g(s,c)=d or h(c,d)=s. Either of these
functions lead to trap doors.

If there exists g(s,c)=d then the attacker can insert a additional
data segment knowing what the checksum should be, calculate the
checksum up to that point giving the seed, then calculate the
appropriate "filler" that will make the checksums match.

If there exists h(c,d)=s the attacker inserts the desired data
segment followed by two t'fller data segments. The first filler data
segment is mutated to give a series of checksums using f(s,d)=c.
The second filler data segment is mutated and a series of seeds
generated using h(c,d)=s, the checksums resulting from the first
filler is compared with the seeds calculated from the second filler.
A successful pair of filler blocks will be found on average in
2"*(n/2) generated checksums. This is a variation of the bkthday
attack.

Either of these inversions lead to trap doors. Trap doors are the
most serious threat because of the much reduced effort to generate
forgeries. Unfortunately there is no test to show that a trap door
does not exist for a checksum algorithm.

5.0 Construct ion Techniques
The construction of checksum algorithms that provide noninvert-
ablility is similar to those used in cryptography. The three
methods used are substitution, transposition and feedback.
S ubsfitution involves replacing one block of original data with a
corresponding block from a ciphertext alphabet. Transposition is
the rearranging of blocks of data according to some scheme.
Feedback is the use of previous information in the computation of

a ciphertext block. Nonlinear feedback provides permutation
sensitivity and should be employed. When constructing check-
sum algorithms the following functions are useful: exclusive-or,
raising to a power, modular arithmetic and multiple equations
using the same data.

Along with cryptography, a fruitful source for parts of checksum
algorithms are random number algorithms. Though generally not
suitable for direct use, random number algorithms have many of
the same features that are desirable in checksum algorithms. A
good source for estabfished forms of checksum algorithms,
though either directly concerned with preventing Birthday Attacks
or checksums that are encrypted with the original set of data, is
Jueneman work [JUE83] [JUE86].

6.0 Tests for Checksum Algori thms
It is necessary to test 1) that the checksums generated by a
checksum algorithm provide an even mapping and 2) that the
checksum algorithm is noninvertable. Statistical methods are
employed for testing for even mapping. Three statistical tests to
test the even mapping property are chi-square, collision, and
binomial.

The chi-square test compares the expected distribution (even
mapping) with the checksums generated from executable
programs as data. Since the number of programs needed to have a
statistical significant number at each possible checksum is very
large (for adequate checksum lengths) the output range of possible
checksums is divided into equal groups. A checksum for any
program should have the same probability for each of the groups
due to even mapping. Thus a chi-square statistic for all the
checksums can be generated and compared to tell if statistically
significant.

The collision test is based on the fact that even though there are
many possible checksums while the number of checksum actually
generated is relatively small, we can expect some of the programs
to have the same checksum. Using the formulas in Knuth
[K_NU82] it is possible to tell if this number of "colfisions" is in
the expected range. The colfision test is probably only applicable
to checksums of length 32 or less, otherwise the number of
checksums generated will have to be very large in order to find
collisions.

The binomial test is a check to see ff each bit of a generated
checksum has equal probabifity of being a zero or one. To test
this bit wise probability the number of one (or zero) bits is
calculated for each checksum. The resulting distribution should
be a binomial distribution. The amount the generated distribution
differs from a binomial distribution can be tested for significance
using a chi-square test.

There is a difficulty in finding enough programs the generate
checksums for in order be able to test statistical significance.
Random numbers can be used to simulate programs for the
purposes of statistical significance.

- 2 9 -

The testing of a program for noninvertability is more difficult than
testing for even mapping because no standard method exists for
testing for noninvertability. Each algorithm needs to be scruti-
nized for possible noninvertability. Noninvertability must be
considered in the case of existence of a general inversion
algorithm, where any (checksum, seed, data) can be inverted, and
specific inversion algorithms where only a specific combination
of (checksum, seed, data) can be inverted. Cohen provides an
example of a specific inversion of the original form of his
cryptographic checksum [COH86] [COH88].

In the course of our investigation we developed a checksum
algorithm that satisfied these tests and was efficient enough for
use on microcomputers.

7.0 Conclusions

In future we can expect viruses to actively attack virus detection
systems which use checksums to determine changes. A virus
attempts to determine a similar program, which it has infected,
that has the same checksum as the original uninfected program.
The virus can determine the infected program either by using a
brute force method or a trapdoor. In order to defeat these attacks
the checksum algorithm must have the features of a general
checksum algorithms (even mapping, permutation sensitivity, and
overdeterminism), be long enough to defeat a brute force attack,
and be noninvertable. The checksum algorithm must be tested for
suitability to provide even mapping and noninvertability. The
even mapping can be accomplished by statistical tests, but there is
no standard method of testing noninvertability.

As viruses become "smarter", checksum algorithms must increase
in complexity in order to provide protection. This paper outlines
the general methods to properly accomplish this complexity.

[KNU81]

[POZ861

Barbara, CA, 327-346.

Knuth, D. E., The Art of Computer Programming,
Volume 2, Seminumerical Algorithms, Addison-
Wesley Publishing Company, Reading, MA, 1981.

Pozzo, M. M., Gray, T. E., An Approach to
Containing Computer Viruses, Computers and
Security 6 (4), August 1987, 321-331.

References

[COH86]

[COH881

[DENS2]

[JUE831

[JUE86]

Cohen, F., A Cryptographic Checksum for
Integrity Protection, Computers and Security 6
(1987), 505-510.

Cohen, F., On the Implications of Computer
Viruses and Methods of Defense, Computers and
Security 7 (1988), 167-184.

Denning, D., Cryptography and Data Security,
Addison-Wesley Publishing Company, Reading,
MA, 1982.

Jueneman, R. R., Matyas, S. M., Meyer, C. H.,
Message Authentication with Manipulation
Detection Codes, IEEE Conference on Security
and Privacy 1983, 33-54.

Jueneman, R. R., A High Speed Manipulation
Detection Code, CRYPTO 86 (1986), Santa

