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Adequacy  of  Checksum Algori thms for Computer  Virus  Detect ion 
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1.0 Introduction 
Checksums, long used for random error detection in communica- 
tions, is now being employed to detect changes for integrity 
purposes. For example, checksums are being used for the 
detection of  computer viruses [POZ86]. The checksum algo- 
rithrns for detecting random errors are not sufficient against an 
entity that wishes to "fool"  the checksum mechanism. This entity 
wants to be able to insert a forgery in place of the original data 
such that an unsuspecting user does not realize the forgery has 
occurred. This paper describes checksum algorithms and features 
of checksum algorithms to deter this type of  forgery. 

2.0 Checksums  
A checksum, or digital signature, is any fixed length block 
functionally dependent on every bit of the message, so that 
different messages will have different checksums with a high 
probability [DEN82]. A checksum is generated by a checksum 
algorithm. Probably the most  used checksum algorithm family is 
that of Cyclical Redundancy Codes (CRC) which are used 
extensively in communication. General checksum algorithms, 
such as the CRCs must produce checksums with the following 
features: 

1) Even mapping - the probability of producing any 
checksum is approximately equal to generating any 
other checksum. Given a checksum of n bits this 
probability is equal to 2**(-n). 

2) Permutation Sensitivity - different ordering of data 
items within a data set produce different checksums. 
I.e. the checksum of ABC produces a different check- 
sum than ACB. 

3) Overdeterminism - the checksum is functionally 
dependent on every bit of the data being checksummed. 
If  this were not  the case then errors in the bits of the 
data which did not  affect the checksum would be 

undetected. 
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These features are sufficient for random errors or random bursts 
of errors, but are not  sufficient for an active attacker who 
introduces calculated nonrandom errors. 

3.0 Attacks Against Checksums 
An attacker defeats a checksum algorithm, f(s,d)=c where s is the 
seed, d is the data, and c is the checksum by determining a set of 
data, D',  to insert in place of the original data, D, such that the 
checksum of D and D'  are equal: f(s,D) = f(s,D') There are three 
general attacks against checksums: brute force, birthday, and trap 
door. 

Brute Force Attack 
A brute force attack involves generating many different sets of 
data and corresponding checksums until a match with the 
checksum of the original data is found. Typically only a small 
portion of the original data is changed in order to maintain the 
functionality of the original data. The last block of the changed 
data is mutated until the proper checksum is found. With even 
mapping, the probability of generating a checksum, with any 
single mutation, that matches the original data is 2**(-n). It is 
necessary to generate ln(2) * 2**n mutations before there is a 
50% probability of a successful attack. For example, for a 16 bit 
checksum approximately 40,000 mutations are necessary before 
there is a 50% chance of success. 

Birthday Attack  
The birthday atttack is a forgery accomplished by the originator of 
the data. This attack involves generating and storing many 
variations of a original set of data and corresponding checksum 
and many variations of the set of data and corresponding 
checksums to be inserted. Since any pair of original data and 
forged data provides a successful forger), the number of variations 
needed to be generated is greatly reduced. A birthday attack will 
succeed by producing a forgery 50% of the time after 2"*(n/2) 
checksums. The standard birthday attack can only be accom- 
plished by an attacker which has access to Lhe original data before 
it is originally checksummed. 
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Trap Door Attack 
A trap door is essential a short cut to determine a set of  data to 
insert as a forgery. If  an algorithm exists to determine a set o f  
data that generates the same checksum and requires less computa- 
tional effort than a brute force attack, then a trap door exists. 

4.0 Features  for protect ion against attackers. 
The two basic features to protect against attackers are the length 
of the checksum and the noninvertablity of the checksum 
algorithm. 

Length of  the Checksum.  
The length of the checksum is its the number of  bits in the 
checksum. The checksum should be of  sufficient length such that 
the cost of  generating enough variations in a brute force attack is 
unacceptably high to the attacker and, ff necessary, provide 
protection against birthday attacks. A 32 bit length checksum 
provides adequate protection from brute force attacks while 128 
bit length checksum is necessary to provide protection from 
birthday attacks [JUE86]. 

Noninvertable  Algor i thm 
A noninvertable checksum algorithm is a function that cannot be 
inverted. Thus given a checksum algorithm, f(s,d)=c there does 
not exist either a function g(s,c)=d or h(c,d)=s. Either of  these 
functions lead to trap doors. 

If there exists g(s,c)=d then the attacker can insert a additional 
data segment knowing what the checksum should be, calculate the 
checksum up to that point giving the seed, then calculate the 
appropriate "filler" that will make the checksums match. 

If there exists h(c,d)=s the attacker inserts the desired data 
segment followed by two t'fller data segments. The first filler data 
segment is mutated to give a series of  checksums using f(s,d)=c. 
The second filler data segment is mutated and a series of seeds 
generated using h(c,d)=s, the checksums resulting from the first 
filler is compared with the seeds calculated from the second filler. 
A successful pair of filler blocks will be found on average in 
2"*(n/2) generated checksums. This is a variation of the bkthday 
attack. 

Either of these inversions lead to trap doors. Trap doors are the 
most serious threat because of the much reduced effort to generate 
forgeries. Unfortunately there is no test to show that a trap door 
does not exist for a checksum algorithm. 

5.0 Construct ion Techniques  
The construction of checksum algorithms that provide noninvert- 
ablility is similar to those used in cryptography. The three 
methods used are substitution, transposition and feedback. 
S ubsfitution involves replacing one block of original data with a 
corresponding block from a ciphertext alphabet. Transposition is 
the rearranging of  blocks of data according to some scheme. 
Feedback is the use of  previous information in the computation of 

a ciphertext block. Nonlinear feedback provides permutation 
sensitivity and should be employed. When constructing check- 
sum algorithms the following functions are useful: exclusive-or, 
raising to a power, modular arithmetic and multiple equations 
using the same data. 

Along with cryptography, a fruitful source for parts of checksum 
algorithms are random number algorithms. Though generally not 
suitable for direct use, random number algorithms have many of 
the same features that are desirable in checksum algorithms. A 
good source for estabfished forms of checksum algorithms, 
though either directly concerned with preventing Birthday Attacks 
or checksums that are encrypted with the original set of data, is 
Jueneman work [JUE83] [JUE86]. 

6.0 Tests for Checksum Algori thms 
It is necessary to test 1) that the checksums generated by a 
checksum algorithm provide an even mapping and 2) that the 
checksum algorithm is noninvertable. Statistical methods are 
employed for testing for even mapping. Three statistical tests to 
test the even mapping property are chi-square, collision, and 
binomial. 

The chi-square test compares the expected distribution (even 
mapping) with the checksums generated from executable 
programs as data. Since the number of  programs needed to have a 
statistical significant number at each possible checksum is very 
large (for adequate checksum lengths) the output range of possible 
checksums is divided into equal groups. A checksum for any 
program should have the same probability for each of the groups 
due to even mapping. Thus a chi-square statistic for all the 
checksums can be generated and compared to tell if statistically 
significant. 

The collision test is based on the fact that even though there are 
many possible checksums while the number of checksum actually 
generated is relatively small, we can expect some of the programs 
to have the same checksum. Using the formulas in Knuth 
[K_NU82] it is possible to tell if this number of "colfisions" is in 
the expected range. The colfision test is probably only applicable 
to checksums of length 32 or less, otherwise the number of 
checksums generated will have to be very large in order to find 
collisions. 

The binomial test is a check to see ff each bit of  a generated 
checksum has equal probabifity of being a zero or one. To test 
this bit wise probability the number of one (or zero) bits is 
calculated for each checksum. The resulting distribution should 
be a binomial distribution. The amount the generated distribution 
differs from a binomial distribution can be tested for significance 
using a chi-square test. 

There is a difficulty in finding enough programs the generate 
checksums for in order be able to test statistical significance. 
Random numbers can be used to simulate programs for the 
purposes of statistical significance. 
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The testing of a program for noninvertability is more difficult than 
testing for even mapping because no standard method exists for 
testing for noninvertability. Each algorithm needs to be scruti- 
nized for possible noninvertability. Noninvertability must be 
considered in the case of existence of a general inversion 
algorithm, where any (checksum, seed, data) can be inverted, and 
specific inversion algorithms where only a specific combination 
of (checksum, seed, data) can be inverted. Cohen provides an 
example of a specific inversion of the original form of his 
cryptographic checksum [COH86] [COH88]. 

In the course of our investigation we developed a checksum 
algorithm that satisfied these tests and was efficient enough for 
use on microcomputers. 

7.0 Conclusions 

In future we can expect viruses to actively attack virus detection 
systems which use checksums to determine changes. A virus 
attempts to determine a similar program, which it has infected, 
that has the same checksum as the original uninfected program. 
The virus can determine the infected program either by using a 
brute force method or a trapdoor. In order to defeat these attacks 
the checksum algorithm must have the features of a general 
checksum algorithms (even mapping, permutation sensitivity, and 
overdeterminism), be long enough to defeat a brute force attack, 
and be noninvertable. The checksum algorithm must be tested for 
suitability to provide even mapping and noninvertability. The 
even mapping can be accomplished by statistical tests, but there is 
no standard method of testing noninvertability. 

As viruses become "smarter", checksum algorithms must increase 
in complexity in order to provide protection. This paper outlines 
the general methods to properly accomplish this complexity. 
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