
VIRUS BULLETIN www.virusbtn.com

4 FEBRUARY 2007

CAIN AND ABUL
Peter Ferrie
Symantec Security Response, USA

As the decline in file-infecting viruses continues, it is
perhaps fitting that the newest virus for the 64-bit platform,
W64/Abul, is less advanced than the one that came before it.
Despite this, though, Abul implements some new features
that make it interesting in its own way.

BASIC INSTINCT
The virus begins by retrieving the base address of
kernel32.dll by following some pointers in the Process
Environment Block. This is in contrast to the method that
was used previously, which was to search memory from
either a return address or an API within the kernel32.dll
image. The newer method of retrieving the base address of
kernel32.dll is quite common now on the 32-bit platform,
though it was first documented in 2002. It is used by a lot of
shellcode in exploits, because the Process Environment
Block is always available, whereas an API or return address
might not be accessible at the time of exploitation.

The first bug appears here. Though the base address of
kernel32.dll is now known to the virus, it is not stored
anywhere. There is a variable that contains this address
already, and it is used later in the code, but its value was
assigned by the first-generation code, and not by the virus
code itself. Thus, if an infected file is placed on a machine
where the base address of kernel32.dll is different from that
of the virus writer’s machine, then the virus will not work. It
seems that the virus writer didn’t notice the problem
because all of his replications worked perfectly on his own
machine. That situation is a nightmare for any developer,
but fortunately virus writers don’t do tech support. In the
words of Dogbert, ‘I’m sorry, our software is perfect. The
problem must be you’.

SUMTIMES I WONDER
Given the base address of kernel32.dll, the virus proceeds to
retrieve the addresses of 30 APIs. Those APIs are mostly
related to memory management and file infection.
ReleaseMutex() and MessageBoxA() are also in the list,
though neither is used in the code. Perhaps the virus writer
intended to make a multi-threaded version, but then gave up
on the idea. The MessageBoxA() API is probably left over
from debugging.

The names of the APIs are not stored as strings. Instead, the
virus stores them as values calculated by summing the value
of each character in the name, along with the length of the

name. This is faster than the more common CRC32 method,
but is more likely to suffer from name collisions, resulting
in the retrieval of the wrong API address.

Even though the virus retrieves all 30 API addresses, it
uses only two of them at this point: VirtualAlloc() and
VirtualProtect(). VirtualAlloc() is used to allocate a
memory block within the process memory space, but
outside of the memory image. VirtualProtect() is used to
make that new memory block executable. The virus then
copies itself into the new memory block and continues
execution from there.

HAVEN’T I SEEN YOU BEFORE?
Once in the new memory block, the virus checks for the
presence of a debugger, by looking in a field within the
Process Environment Block. This mimics the behaviour of
the IsDebuggerPresent() API. If no debugger was found,
then the virus retrieves the same 30 API addresses as before,
but this time using the kernel32.dll variable instead of the
Process Environment Block pointers.

The virus also retrieves the addresses of some
compression-related APIs from ntdll.dll, some message-
related APIs from user32.dll, some process-related APIs
from psapi.dll, and some token-related APIs from
advapi32.dll. The compression APIs remain undocumented
by Microsoft, and marked as ‘reserved for system use’.
They are intended to be used by the file system for
compression of individual files. However, they have been
reversed-engineered and well documented (see, for
example, http://www.alex-ionescu.com/Native.pdf).

The host code section is then made writable, and the
original host code is decompressed into the space originally
occupied by the virus code. At this point, the virus attempts
to open a mutex, to see if any other copies of the virus are
running on the system. If they are, then the virus simply
transfers control to the host. Otherwise, the virus prepares to
go resident and infect the system.

PRIVILEGED AND CONFIDENTIAL
In order to go resident, the virus attempts to acquire debug
privileges. This is necessary for process enumeration and
the thread injection that it requires. However, the virus
ignores the result of the attempt, even though that
subroutine returns a status.

The virus then attempts to enumerate the currently running
processes, looking for the csrss.exe process. This attempt
will fail if the debug privilege has not been acquired, and
another bug appears here. The virus does not check whether
the function fails. Instead, the virus checks the number of

VIRUS ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5FEBRUARY 2007

process IDs that were returned. However, a quick analysis
of the EnumProcesses() API function reveals that the
variable that receives the number of process IDs is not
initialised if an error occurs within the function. Thus, if the
virus has not acquired the debug privilege, it could end up
using an unpredictable value for the number of process IDs,
and a corresponding list of unpredictable values for the
process IDs themselves. If the number of process IDs is
large enough, the virus will attempt to access an illegal
memory region and crash. In some cases, too, at least some
of the unpredictable process ID values could match real
process IDs on the system, however it seems unlikely that
any of them will match the process ID of csrss.exe.

STILL WONDERING
As with the API names, the ‘csrss.exe’ string is stored as the
sum of the value of each character in the name, along with
the length of the name. While that works well for API
names, for which the character case is constant, the
‘csrss.exe’ process name could easily have a different case
on some systems, in which case the sum will be different.
However, if the virus successfully finds the csrss.exe
process, it will inject itself as a new thread within the
csrss.exe process. The thread priority is set to the idle level,
so that it runs very rarely.

The new thread in the csrss.exe process begins by
enumerating the currently running processes, looking for
the winlogon.exe process. If it is found, then the virus
injects a thread into it. The new thread in the winlogon.exe
process is very short. It begins by retrieving the address of
the SfcTerminateWatcherThread() API from sfc.dll, then
calling it. This API can be called only by a thread within
the winlogon.exe process, hence the need for the injected
thread. The API does exactly what the name suggests: it
terminates the watcher thread. This allows arbitrary
modification of all files, including protected ones, until
reboot. During boot, the winlogon.exe process will restart
the SFC thread and potentially reveal the presence of
altered files. To protect against that, the virus deletes
‘%system%\sfcfiles.dll’, which houses the list of
protected files. This disables the SFC permanently. The
thread then exits.

WAITING FOR GODOT

Meanwhile, the new thread in the csrss.exe process sleeps
for two seconds, then creates the mutex to prevent other
copies of the virus code from running. The virus does not
check the result. By waiting for so long, the virus runs the
risk of there being other copies of the virus code running,
resulting in several threads fighting for control.

After creating the mutex, the virus begins searching for
.EXE files in the c: drive, beginning with the root directory
and continuing recursively through all subdirectories. Once
the search has completed, the thread will sleep forever.

For any .EXE file that is found, the virus opens it and maps
a view of the whole file. The virus writer assumes that any
file with the .EXE extension is of the correct format, so
there is no check for the ‘MZ’ or ‘PE’ signatures. There is
also no exception handling, so a malformed file will cause
the code to crash, and since csrss.exe is a privileged process,
a crash in there will cause significant system instability.

The virus parses the file format, assuming that the file is a
Portable Executable. It checks that the executable flag is set
in the header, that the COFF magic number corresponds to a
64-bit file, that the values in the CPU field correspond to the
AMD x64 (the value is identical for the Intel EM64T), and
that the subsystem is GUI or CUI. The virus avoids
infecting DLL and system files.

If all of these checks pass, then the virus attempts to
compress the first section in the file. This could be
considered the infection marker: if the section cannot be
compressed, the file cannot be infected, and presumably an
already infected file cannot be compressed further. However,
there is an additional requirement: the compression ratio
must be sufficiently high that the virus code can fit into the
remaining space in the section. The idea of host
compression is not new. It was first implemented in the
Cruncher virus in about 1993, and more recently in viruses
such as Aldebara, Redemption, HybrisF, and Detnat.

If the compression leaves enough space for the virus code,
then the virus will append itself to the compressed block,
and alter the host entrypoint to point to the virus code.

CONCLUSION
Abul was written to demonstrate that viruses written in C
can be almost as small as viruses written in assembler, but it
also demonstrates that they can be just as buggy. With
nothing left to prove, perhaps the decline in file-infecting
viruses can continue.

W64/Abul

Type: Parasitic memory-resident PE infector.

Size: 3,696 bytes.

Payload: None.

Removal: Delete infected files and restore them
from backup.

