
10 • VIRUS BULLETIN NOVEMBER 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139./97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

VIRUS ANALYSIS 1

Coping with Cabanas
Péter Ször
Data Fellows

1997 seems to be the year of the Windows 95 virus break-
through – although, so far, all Win32 viruses have been
different in implementation. Virus writers have tried to
attack the system in various ways – with some viruses
using PE (Portable Executable) infection, or going resident
as VxDs (Virtual Device Drivers), while others were able to
infect DOS programs too. No Win32 virus to date worked
under NT. Win32.Cabanas, recently received from its
author, changes that.

Cabanas is a per-process resident, anti-debugging, partially
packed/encrypted, anti-heuristic, semi-stealth virus. Its
author, who also wrote the infamous WM/CAP virus, is a
member of the 29A group. Cabanas, like CAP, uses a novel
infection mechanism and has what was, initially, a barely
comprehensible structure. Usually it is relatively easy to
analyse a virus with a disassembler, some DOS viruses
taking only a few hours.

This was not the case with Cabanas; it took days to analyse,
consuming lots of energy and good hacking utilities. For
instance, Cabanas cannot be traced in application level
debuggers such as TD32; it requires SoftIce – ‘a debugger
on steroids’. This is because typical debuggers focus on the
address space of the program and cannot go to the operat-
ing system level. Cabanas cannot be loaded into a normal
disassembler without it modifying the characteristics of the
virus’ code section. This trick itself was enough to cause
the first headache in my analysis.

Incompatibilities with Windows NT

I have to say that I have a different view of NT, in terms of
security, now that I understand Cabanas. I drew incorrect
conclusions from tests of the first Windows 95 virus, Boza
(see VB, February 1996, p.15). Most anti-virus researchers
tested Boza on Windows NT, which, reassuringly, did not
even try to execute the infected image. This led some to

think that NT
had superior
virus detection
or prevention
properties. I

patched some Boza-infected files to find out why. The PE
format was designed by Microsoft for use in all its Win32
systems (Windows NT, Windows 95 and Win32s). However,
the implementation of the loader is different from system to
system. The NT loader simply checks a few more things in
PE files than the Windows 95 one, thus finding Boza-
infected files ‘suspicious’. One field in the header of Boza’s

.vlad section is not correctly calculated by its infection
routine, but if this was fixed Boza-infected PE files should
be able to run under NT. However, even if Boza did not
have this problem, it would still not be able to replicate
under NT.

Every Windows 95 virus has to call two Win32 KERNEL
APIs – GetModuleHandleA and GetProcAddress. Since
these are in KERNEL32.DLL, it is possible for Windows 95
viruses to get those functions directly, with a hack. Most
Windows 95 viruses so far have hard-coded pointers to
these APIs.

When the linker creates an executable, it assumes that the
file will be memory-mapped to a specific location. In the
Image File Header of PE files, there is a field called Image
Base which holds this address. For executables, this address
defaults to 0x400000. Windows 95’s KERNEL32.DLL has
an Image Base address of 0xBFF70000. The two required
API addresses will be at fixed offsets from KERNEL32’s
base address in the same release of Windows 95. However,
these offsets can be different in other releases, making
viruses using these fixed addresses not compatible across
Windows 95 systems. In NT, the KERNEL32 Image Base
address defaults to 0x77F00000, therefore viruses with a
Windows 95-specific base address cannot work under NT.

Furthermore, NT does not support VxDs. Thus, viruses like
Memorial (see VB, September 1997, p.6) cannot operate
under NT. They would have to include different infection
algorithms for Windows 95 and NT in order to succeed on
both systems, making them unduly complicated.

If a Win32 virus could overcome these compatibility and
implementation problems, it should be able to work equally
well on both systems. Such viruses may even have Unicode
support, but it would not be mandatory. Win32.Cabanas has
all of these features!

The Role of the Import Table

Cabanas relies heavily on the Import Table. In Win32
environments, DLLs are linked through the PE file’s Import
Table to the applications that use them. The Import Table
holds the names of the imported DLLs and the names of the
functions imported from them.

The executable code is located in the .text section of PE files
(or in the CODE section, as the Borland linker calls it). When
an application calls a function from a DLL, it does not call the
DLL directly. Instead, the call goes to a JMP DWORD PTR
<address> instruction in the executable’s .text section. The
address is stored in the .idata section (or sometimes in
.text). The JMP instruction transfers control to that target
address. Thus, the DWORD in the .idata section contains
the real address of the API’s entry point.

VIRUS BULLETIN NOVEMBER 1997 • 11

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

As all calls to a given DLL function are passed through one
location, the loader need not patch every instruction. All
the PE loader has to do is patch the correct address for each
imported function into the list in the .idata section.

Running Infected PE Files

Execution of a Cabanas-infected file starts at the original
entry point. Cabanas does not touch the entry point field in
the Image File Header, patching the host program at its
entry point instead. Leapfrog was the first DOS virus to use
this trick. Five bytes at the entry point are replaced with a
FAR JMP to the address where the original program ended.
You may ask: ‘But there can be relocations which may
overwrite this location. How can the virus avoid this?’ The
answer is simple; Cabanas handles the relocation table too.

The first function in Cabanas simply unpacks and decrypts
a table of Win32 KERNEL API names. The word ‘File’ is
replaced in the names that would normally contain it.
GetProcAddress is not packed at the beginning of the string
table, but the next function name is ‘encrypted’ as
‘Ge’,t+80h,’AttributesA’ or GetFileAttributesA when
unpacked. Since Cabanas has Unicode support, the next
string is GetFileAttributesW which is described in two
bytes: 80h, SizeOfPreviousUnpackedString. The other
strings are packed in the same way.

The real problem is that the virus uses Structured Exception
Handling (SEH) as an anti-debug function. Not knowing
the form of C++’s __try and _except functions in assembly,
I ran into this trap several times before it dawned on me –
the goal of this function is to set a new SEH FRAME and
generate an exception. When execution reaches the instruc-
tion which caused the exception, control is redirected to the
operating system’s Exception Handler (EIP will point into
the kernel). This is very annoying and needs SoftIce to
trace. The operating system’s exception handler sets the
exception type and returns to the application. As a result,
no general protection fault will be displayed and the SEH
FRAME will be removed.

When the unpack/decryptor function is ready, the virus
calls a routine to find KERNEL32’s original Base Address.
During infection, the virus searches the Import Table for
GetModuleHandleA and GetModuleHandleW. When it
finds them, its saves pointers to the DWORDs in the .idata
list. If the application does not have either import, the virus
uses another, unreliable way to get the address. This is
probably the worst bug in the virus. (I should note here that
in Win32 environments the Module Handle and Base
Address are the same.) When the virus has the Base
Address, it calls its own routine to get the function address
of GetProcAddress. The first method is based on the search
in the Import Table during infection time. In most cases,
Win32 applications import the GetProcAddress API, thus
the virus should not use a secondary routine to get the same
result. If the first method fails, the virus searches for
GetProcAddress and GetProcAddressFromExportsTable
exports in KERNEL32’s .edata section.

Cabanas searches for the GetProcAddress string in the
Function Name Table of KERNEL32’s Export Table. When
it finds the correct string, it gets the entry point from the
Function Address Table and returns. This function is one of
the most important from the virus’ point of view and is
compatible with all Win32 systems.

If the entry point of GetProcAddress was returned by the
GetProcAddressFromExportsTable function, the virus saves
it to use later. If not, the function will be used several times,
having been ‘secured’ with Structured Exception Handling
to avoid possible exceptions. The virus can now get the
addresses of all the Win32 APIs it needs to use. Cabanas is
ready to replicate.

Direct Action Infection

The infection code is surprisingly fast, in spite of the fact it
runs through all the files in the Windows, Windows System
and current directories. This is because the virus uses
memory-mapped files. The full process takes no more then
a few seconds on a 486. First, the virus gets the name of the
Windows directory with the GetSystemDirectoryA API,
then searches it for non-infected executables. This uses the
FindFirstFileA and FindNextFileA APIs, searching for
non-directory entries and checking file sizes.

Those divisible by 101 are assumed infected. Those larger
than 64MB are left alone. Targeted files are opened and
mapped using the CreateFileA and CreateFileMappingA
APIs. If a file is shorter than 128 bytes, it is closed and
infection aborted. Cabanas checks for the ‘MZ’ marker at
the beginning of the image, then repositions to the PE
header area. It checks that the executable is for 386+
machines and looks for the internal file type, which must be
an executable file, not a DLL.

Next, the virus calculates a special checksum using the
checksum field of the PE file’s Optional Header and the
file-stamp field of the Image File Header. If the file seems
to be infected, the virus closes it. If not, Cabanas saves the
original file attributes, changing them so it can write to the
file. It opens and maps the potential host in write mode and
searches for the GetModuleHandleA, GetModuleHandleW
and GetProcAddress API imports in the host’s Import Table
and calculates pointers to the .idata section. Then it calls a
routine to patch the virus into the file.

This routine sets the MEM_WRITE flag of the .idata
section if it is notalready set, but only if this section is not
located in an executable area. This means that there are
some extreme cases when this table is part of the .text
(CODE) section. The first five bytes at the host’s entry
point are replaced with a FAR JMP to the end of the host.
The infection procedure checks for relocations that may
overwrite this FAR JMP. If the relocation table size is non-
zero, a routine searches the .reloc area. If a relocation
points into the FAR JMP area, its relocation type is cleared
so that it will not be used by the loader. This also marks the
relocation so Cabanas will be able to find the host later.

12 • VIRUS BULLETIN NOVEMBER 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139./97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

A ‘parameter block’ of information needed to rebuild and
start the host application is created, including the original
five bytes from the host’s entry point and its location. The
self-recognition ‘checksum’ is calculated, as is the new file
size. The size of the virus code is around 3000 bytes, but
most infected files will grow by a little more than this
because Cabanas pads itself to make the infected file size
evenly divisible by 101.

The virus does not create a new section header for its code,
but modifies the last section header in the file (usually
.reloc) to be longer, ‘making’ enough space for the virus’
code and setting the section’s characteristics to include the
MEM_WRITE flag. This makes infection less risky. The
SizeOfImage field in the header is corrected and the file
unmapped and closed. Finally, the file is truncated to the
previously calculated size and the original time, date and
file attributes reset.

Rebuilding the Host and Going Resident

Following the ‘seek and infect’ phase, Cabanas uses the
GetCurrentProcess and WriteProcessMemory functions to
write the original five bytes to the host’s entry point. After
this, it relocates the code area, if necessary, by searching
the .reloc section for its specially marked entries. Now the
virus goes resident, based on manipulation of the Import
Table. With the addresses of imported functions in the
host’s .idata section, Cabanas need simply replace them
with the addresses of its own API handlers.

To achieve this, Cabanas opens and maps the host. It
allocates a 12232-byte block, copies itself there, then
searches for the names of the functions it hooks: _lopen,
CopyFileA, CopyFileW, CreateFileA, CreateFileW,
CreateProcessA, CreateProcessW, FindClose,
FindFirstFileA, FindFirstFileW, FindNextFileA,
FindNextFileW, GetFileAttributesA, GetFileAttributesW,
GetProcAddress, MoveFileA, MoveFileExA,
MoveFileExW, MoveFileW, OpenFile, SetFileAttrA, and
SetFileAttrW. Whenever it finds one, its saves the original
address in its own JMP table and replaces the DWORD in
the host’s .idata section with a pointer to its own function.
Finally, the virus closes and unmaps the host, then starts the
application by jumping to the original entry point in the
.text section.

Some Windows programmers may say: ‘But this hook
mechanism is not efficient enough. Whenever the applica-
tion does not have imports for some of these APIs, but calls
them directly by using GetProcAddress, the virus cannot
hook anything other than the GetProcAddress API.’ That is
the reason that the virus hooks it.

When an infected program calls a Cabanas-hooked API, the
virus’ handler calls the original GetProcAddress for the
address of the requested API. After this, it checks whether
the function is a KERNEL32 API, and if it is one that it
wants to hook. If so, and it is not yet hooked, the virus
returns a new API address pointing into its jump table.

Stealth, et al

Cabanas implements semi-stealth: during FindFirstFileA,
FindFirstFileW, FindNextFileA, FindNextFileW it checks
for already infected programs. If a program is not infected,
Cabanas infects it, otherwise it hides the change in file size.
Thus, if a scanner checks its size by calling these APIs, it
cannot detect the size change and will start scanning if no
other checks are made. Anti-virus programs must have
robust self-checks. One possible defence against Cabanas’
stealth would be to compare the API addresses in your own
Import Table with those in the KERNEL32 Export Table.

The virus can see all files accessed on an infected machine
and since the NT command interpreter (CMD.EXE) uses
the Win32 FindFirst/Next APIs during a DIR command,
every non-infected file will be infected. The virus will also
infect files during every other hooked API request.

Conclusion

Cabanas shows that a virus need not be NT-specific to work
under NT. In fact, a working NT virus will more likely not
have Windows 95-specific functionality. However, I expect
virus writers will use knowledge they have gained from
Windows 95 to move to the more robust platform.

The author of Cabanas claims to have written a polymor-
phic engine, which was not included in this first version –
‘One Half is not dead if you understand what I mean’.
The next release of Cabanas could have a polymorphic
decryptor in the .text section of the infected program. This
will make the disinfection of such viruses very complicated
in the future.

Win32.Cabanas

Aliases: Cabanas.

Type: Win32 (Windows NT, Windows 95,
Win32s) PE infector. Per-process
resident, semi-stealth, fast infector.

Self-recognition in Files:
Files with sizes divisible by 101 are
assumed to be infected and a special
checksum is stored in the file-stamp
field of the PE Header (see text).

Self-recognition in Memory:
Not needed.

Hex Pattern in PE Files:

AB8B C6AB 6489 2360 8743 FE83
EF97 5857 57AC D2C0 34B5 7920

Intercepts: Many Win32 kernel APIs – see text.

Payload: None.

Removal: Recover infected files from backup or
replace with originals.

