
Detecting Stealth Software with Strider GhostBuster

Yi-Min Wang, Doug Beck, Binh Vo, Roussi Roussev, and Chad Verbowski

Microsoft Research, Redmond

Abstract

Stealth malware programs that silently infect

enterprise and consumer machines are becoming a major

threat to the future of the Internet [XZ04]. Resource hiding

is a powerful stealth technique commonly used by

malware to evade detection by computer users and anti-

malware scanners. In this paper, we focus on a subclass of

malware, termed “ghostware”, which hide files,

configuration settings, processes, and loaded modules

from the operating system’s query and enumeration

Application Programming Interfaces (APIs). Instead of

targeting individual stealth implementations, we describe

a systematic framework for detecting multiple types of

hidden resources by leveraging the hiding behavior as a

detection mechanism. Specifically, we adopt a cross-view

diff-based approach to ghostware detection by comparing

a high-level infected scan with a low-level clean scan and

alternatively comparing an inside-the-box infected scan

with an outside-the-box clean scan. We describe the design

and implementation of the Strider GhostBuster tool and

demonstrate its efficiency and effectiveness in detecting

resources hidden by real-world malware such as rootkits,

Trojans, and key-loggers.

1. Introduction

The term “stealth malware” refers to a large class of

software programs that try to hide their presence from

operating system (OS) utilities commonly used by

computer users and malware detection software such as

anti-virus and anti-spyware programs. Stealth techniques

range widely from the simple use of hidden file attributes

to sophisticated code hiding in video card EEPROM and

bad disk sectors, from user-mode API interception to

kernel-mode data structure manipulation, and from

individual trojanized OS utilities to OS patching with

system-wide effect. Stealth software presents a major

challenge to trustworthy computing by making it

extremely difficult for computer users to answer the

question: “Has my machine been compromised?”

Information on stealth techniques [YN04] and easy-to-use,

configurable tools for providing stealth capabilities

[ZH,ZA] are becoming increasingly available. Installations

of such unwanted software on user machines through

vulnerability exploits [XS04,YB04], spam emails [XG04],

and bundling with freeware are becoming widespread

[XZ04]. The increasing uses of malware-infected

machines in computer crimes such as phishing, spamming,

DOS attacks, keystroke logging, etc.

[XG03,XG04,YC04,XA04,XS04,XP04,XW04] pose a

serious threat to the future of the Internet and the

computing industry.

It is very difficult to reason about the general stealth

software problem and to create solutions because stealth

behavior is not well-defined. In this paper, we focus on an

important subclass of stealth software, which we call

“ghostware” [W04] for ease of presentation. Ghostware

programs hide their resources from the OS-provided

Application Programming Interfaces (APIs) that were

designed to query and enumerate them. The resources may

include files, Windows Registry entries, processes, and

loaded modules. The hiding behavior is typically achieved

through API interception and filtering [YN04] (e.g.,

intercepting file enumeration API calls and removing the

to-be-hidden entries from the returned result set) or Direct

Kernel Object Manipulation (DKOM, e.g., removing to-

be-hidden processes from the Active Process List data

structure) [YV04]. Ghostware encompasses at least three

types of malware and commercial software: (1) rootkits

[PFM+04,ZR,YO03,XP03] and Trojans that hide their

executable files and process instances [ZH,ZV]; (2)

commercial key-loggers that hide their log files containing

keystrokes and screenshots; and (3) commercial file-hiders

that hide user-specified files [ZHF]. Although some of

these ghostware programs may have legitimate uses,

resource-hiding behavior is generally considered highly

undesirable from the user’s perspective.

There are two different approaches to ghostware

detection. The first approach targets the hiding mechanism

by, for example, detecting the presence of API

interceptions [YI,ZVI,YK,YKS,YV04]. It has at least two

disadvantages: first, it cannot catch ghostware programs

that do not use the targeted mechanism; second, it may

catch as false positives legitimate uses of API interceptions

for in-memory software patching, fault-tolerance

wrappers, etc. The second approach targets the hiding

behavior by detecting any discrepancies between “the

truth” and “the lie”. For example, comparing the output of

“ls” and “echo *” can detect an infected “ls” program

[B99].

In this paper, we propose a framework for the second

approach, called GhostBuster, that systematically

accommodates multiple resource types and provides a

convenient inside-the-box solution as well as a more

fundamental outside-the-box solution. To detect each type

of hidden resource, we divide the problem into two parts.

First, we perform both a high-level and a low-level

scan of the resources in an inside-the-box solution. When a

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

ghostware program implements its hiding mechanism

between the two levels as shown in Figure 1, the high-

level scan contains “the lie” and the low-level scan

contains “the truth” so that their difference exposes the

hidden resources. Specifically, the “Master File Table”, the

“Raw Hive Files”, and the “Kernel Process List” are the

low-level resources that we scan to detect hidden files,

Registry entries, and processes, respectively. A major

advantage of such a completely inside-the-box solution is

that it is convenient, efficient and scalable: users can

quickly scan their machines daily or as needed without

having to reboot and corporate IT organizations can

remotely deploy the solution on a large number of

desktops without requiring user cooperation. A

disadvantage is that a ghostware program running with

sufficient privilege can always try to defeat the solution by

interfering with the low-level scan. Another related issue

occurs due to the discrepancies between the truth and the

“truth approximation”, which we discuss later.

Second, to avoid scan interference from a ghostware-

infected OS, our framework aims at exporting the truth so

that it can be scanned outside the box from a clean OS; the

scan is then compared against the inside-the-box generated

high-level scan to expose hidden resources, as shown in

Figure 1. While persistent-state resources such as files and

Registry entries are naturally available outside, volatile-

state resources such as processes and loaded modules

require a mechanism to persist relevant kernel data

structures (see Section 4). Our current implementation uses

Windows Preinstallation Environment (WinPE) CD

[WPE] as the clean OS. Since the ghostware programs are

not running when we perform a scan from WinPE, there

will not be any hiding or malicious interference. This

implies that an outside-the-box solution is more

fundamental. However, this solution is less convenient and

therefore users will only be willing to run it on an

infrequent basis or when they suspect that their machines

have been compromised.

There is a subtle but important difference between the

“cross-view diff” used in GhostBuster and the more

common “cross-time diff” used in Tripwire [KS94] and

the Strider Troubleshooter [WVS03,WVD+03]. The goal

of a cross-time diff is to capture changes made to

persistent state by essentially comparing snapshots from

two different points in time (one before the changes and

one after). In contrast, the goal of a cross-view diff is to

detect hiding behavior by comparing two snapshots of the

same state at exactly the same point in time, but from two

different points of view (one through the ghostware and

one not). Cross-time diff is a more general approach for

capturing a broader range of malware programs, hiding or

not; the downside is that it typically includes a significant

number of false positives stemming from legitimate

changes and thus requires additional noise filtering, which

has a negative impact on usability. In contrast, cross-view

diff targets only ghostware and usually has zero or very

few false positives because legitimate programs rarely

hide.

This paper is organized as follows. Section 2 describes

stealth techniques that are used to hide files, analyzes the

implementations of actual file-hiding ghostware programs,

presents the design and implementation of GhostBuster for

hidden-file detection, and evaluates its performance.

Sections 3 and 4 apply the same framework to the

detection of ghostware programs that hide Windows

Registry entries, processes, and modules, respectively.

Section 5 presents GhostBuster extensions designed to

avoid being targeted by malware and for automating the

outside-the-box detection process. Although the main

focus of this paper is on Windows ghostware, we show in

Section 5 that the GhostBuster approach can be applied to

detecting actual Linux/Unix ghostware as well. Section 6

concludes the paper and outlines future work.

2. Detection of File-hiding Ghostware

Between a user-mode file-query program (such as the

“dir” command in a cmd window) and the physical disk,

there exist many layers where ghostware programs can

insert themselves to intercept and filter resource queries.

Figure 2 illustrates the six different techniques employed

by the 10 file-hiding ghostware programs in our collection.

Of these 10 programs, Urbin, Mersting, Vanquish, Aphex,

and Hacker Defender are rootkits and Trojans, ProBot SE

is a key-logger, and Hide Files, Hide Folders XP,

Advanced Hide Folders, and File & Folder Protector are

commercial file hiders.

Urbin and Mersting make modifications at the highest

level by altering the per-process Import Address Table

(IAT) [R00] entries of file enumeration APIs to point to

their Trojan import functions. In contrast, Vanquish

directly modifies the loaded, in-memory API code so that

its function is called and then it calls the next OS function.

Both techniques cause the Trojan functions to appear in

the call stack trace of a kernel or user-mode debugging

session. To achieve better stealth, Aphex and Hacker

Defender modify the in-memory API code with a jump to

the Trojan code along with a Trojan code jump back to the

next instruction after the API detour [HB99]; the Trojan

code modifies the return address on the stack to cause its

code to be executed in the return path. The only difference

is that Aphex modifies the FindFirstFile and FindNextFile

API code inside Kernel32.dll [YN04] (denoted by

Kernel32!FindFirst(Next)File), while Hacker Defender

modifies the lower-level NtQueryDirectoryFile API

exported by NtDll.dll [YH03].

System-wide file hiding can also be achieved by

running a centralized, kernel-mode intercepting program,

without modifying per-process memory. ProBot SE

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

hijacks kernel-mode file-query APIs by modifying their

dispatch entries in the Service Dispatch Table [YT04]. All

four commercial file hiders use a filter driver [IFS] that is

inserted into the OS file system stack to intercept all file

operations. The filter driver can scope the file-hiding

behavior to specific processes by examining the IRP (I/O

Request Packet) for the I/O operation to determine the

originating process.

Another form of file hiding exploits the restrictions on

filenames enforced by some Win32 API, but not the NTFS

file system. If a ghostware program creates a file using

low-level APIs in an NTFS file system that breaks any of

the restrictions, Win32 API calls will not be able to access

them. Examples include long full pathnames, filenames

with trailing dots or spaces, filenames containing special

characters, reserved filenames, etc. [MSDN].

To detect files hidden by ghostware, our GhostBuster

tool performs the high-level scan using either the

FindFirst(Next)File APIs or the “dir /s /b” command, and

performs the low-level scan by reading the Master File

Table (MFT), which is the core of the NFTS volume

structure [SR00], and other NTFS metadata directly. A

comparison of the two scans reveals hidden files. We note

that not all files revealed by the comparison necessarily

come from ghostware programs; for example, some benign

software bugs may generate filenames that are too long, or

files may be created in the very small time window

between when the high- and low-level scans are taken.

However, in practice the noise level from this is extremely

low. For the outside-the-box solution, our tool scans the

potentially infected hard drive from a clean WinPE CD

boot using either the Win32 APIs, the “dir /s /b”

command, or the low-level scanning code, and compares

the result with the inside high-level scan.

Experimental Results

Figure 3 shows the GhostBuster detection results for

the 10 file-hiding ghostware programs. The Urbin and

Mersting Trojan samples were captured from actual

infected machines. The remaining programs were obtained

from various Web sites. The hidden files are divided into

three categories: (1) ghostware binaries including EXEs,

DLLs, and drivers; (2) ghostware data files such as .ini

configuration files and .log files; and (3) other target files

specified to be hidden by either rootkits/Trojans or file

hiders. The results clearly demonstrate the major

advantage of the GhostBuster cross-view diff approach: it

can uniformly detect files hidden by ghostware programs

implemented with a wide variety of interception

techniques.

The execution time for hidden-file detection depends

on the disk size, speed, and usage. We tested GhostBuster

on 8 machines including 4 corporate desktops, 3 home

machines, and 1 laptop. Seven machines had disk usage

ranging from 5 to 34GB and CPU speed ranging from

550MHz to 2.2GHz. For these machines the inside-the-box

solution took between 30 seconds and 7 minutes. (On the

8th machine, which is a dual-proc 3GHz workstation with

95GB of the 111GB hard drive utilized, the scan took 38

minutes.) The outside-the-box solution typically adds 1.5

to 3 minutes for booting into the WinPE CD.

We did not observe any false positives on any inside-

the-box scans. However, in the outside-the-box solution,

the larger time gap between the two scans and the file

activities during reboot did introduce some false positives.

They were mostly log files generated by always-running

services (such as anti-virus real-time scanners and Change

and Configuration Management (CCM) services), System

Restore [SR] file-change log entries, OS prefetched files

[PF], and browser temporary files. On all but one machine,

the number of false positives was two or less and they

were easily filtered out through manual inspection. On the

one machine that had 7 false positives, we disabled the

CCM service, re-ran the scan, and saw the number of false

positives reduced to 2.

3. Detection of Registry-hiding Ghostware

The Windows Registry is a centralized, hierarchical

store for configuration data containing name-value pairs. A

Registry key is like a file-system folder and can contain

one or more Registry items (or values). The Registry is

composed of several “hives” [SR00], each of which is

backed by a file; for example,

“C:\windows\system32\config\system” stores the

HKLM\system hive, and “ntuser.dat” in the user profile

folder stores the per-user sub-hive under the HKU hive.

Most Windows ghostware programs we studied do not

modify OS files, presumably for two reasons: the

Windows system source code is not widely available, and

there are many easy-to-use Auto-Start Extensibility Points

(ASEPs) [WRV+04] that applications can “hook” to get

automatically started as essentially “part of the system”.

Most of the ASEPs reside in the Registry. Examples

include the HKLM\SYSTEM\CurrentControlSet\Services

Registry key for auto-starting drivers and services, the

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\

Run key for auto-starting additional processes, and the

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\

Explorer\Browser Helper Objects for auto-loading DLLs

into the Internet Explorer browser.

By extensively studying 120 real-world spyware

programs, we have shown that the ASEP-based monitoring

and scanning technique is effective for detecting spyware

programs [WRV+04]. In a similar study of 30 malware

programs, we found that each hooked at least one

Registry-based ASEP. Since ASEP hooks are critical for

their continued operation across reboots, many ghostware

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

programs hide their hooks to evade detection and resist

removal.

The first six file-hiding ghostware programs that we

analyzed in the previous section, namely Urbin, Mersting,

Vanquish, Aphex, Hacker Defender, and ProBot SE, also

hide their ASEP hooks. The hiding techniques are similar

to those illustrated in Figure 2 except that the file-related

APIs Kernel32!FindFirst(Next)File and

NtDll!NtQueryDirectoryFile are replaced by the Registry-

related APIs Advapi32!RegEnumValue and

NtDll!NtEnumerateKey, respectively. Alternatively,

ghostware programs can use the kernel-level Registry

callback functionality to intercept and filter Registry query

results.

 Another form of Registry hiding exploits differences

in the way Win32 API and the Native API interpret

Registry entry names: the former assumes NULL-

terminated strings, while the latter uses counted Unicode

strings [YH]. As a result, Registry entries created with the

Native API can be hidden from most of the Registry

editors that use the Win32 API by embedding NULL

characters as part of the name. Yet another form of

Registry hiding exploits some Registry editors’ software

bugs in handling long names that allow certain entries to

become invisible. The GhostBuster hidden-Registry

detection tool described next can detect these two forms of

hiding as well.

GhostBuster uses either the standard Win32 Registry

enumeration APIs or the RegEdit program for the high-

level scan of all ASEP hooks. Since each Registry hive is

simply a file with a well-defined schema [SR00], our low-

level scan copies and parses each hive file directly to

retrieve all ASEP hooks thus bypassing the APIs. These

copies are “truth approximation” instead of the truth itself,

as shown in Figure 1, because some ghostware programs

may eventually be able to interfere with the copying

process. For the outside scan, GhostBuster mounts

Registry hive files from the potentially infected system

drive under the live Registry loaded from the WinPE CD,

and uses the Win32 APIs or RegEdit to scan all ASEP

hooks to extract the truth.

Detection of hidden ASEP hooks is particularly useful

for ghostware removal: it locates the Registry keys that

can be deleted to disable the ghostware after a reboot, even

if the ghostware files still remain on the machine. It also

reveals the pathnames of the associated program files; the

user can locate and remove those files once the machine is

rebooted and those files are no longer hidden.

Alternatively, on-demand anti-virus scan can be invoked to

remove those key files as well as other auxiliary files

installed by the ghostware.

Experimental Results

Figure 4 shows the results of GhostBuster detecting

six Registry-hiding ghostware programs. Both of the

Trojans that came from the wild, Urbin and Mersting,

hook the AppInit_DLLs ASEP to allow their DLL to be

loaded into every process that loads User32.dll [AID]; they

both hide the ASEP hook. Hacker Defender hides both of

its ASEP hooks, one for the service hxdef100.exe and the

other for the driver hxdefdrv.sys. Vanquish and ProBot SE

similarly hide their service and driver hooks. ProBot SE

and Aphex hide their Run key hooks for starting additional

user-mode processes.

On the 8 machines we tested, inside-the-box hidden-

ASEP detection took between 18 to 63 seconds. In all the

experiments, we observed only one false positive on one

machine: the data field of the AppInit_DLLs entry

contained corrupted data that did not show up in RegEdit,

but appeared in the raw hive parsing. The problem was

fixed by exporting the parent key (to a text file without the

corrupted data), by deleting the parent key, and then by re-

importing the exported key.

4. Detection of Process/Module-hiding

Ghostware

In addition to hiding persistent state such as files and

Registry entries, some ghostware programs hide processes

from the commonly used Task Manager utility and the tlist

command-line utility that is popular among systems

administrators. In many environments, process hiding is

considered more important than file and Registry hiding

because, while there are typically hundreds of thousands of

files and Registry entries [WVD+03], there are usually

only tens of processes running on a machine and so it may

be feasible for the user to go through the entire list in an

attempt to identify suspicious entries.

Figure 5 illustrates the different methods used by the

four process-hiding ghostware programs in our collection.

Aphex intercepts process list queries by modifying the IAT

entry for the NtDll!NtQuerySystemInformation API, while

Hacker Defender and Berbew hijack the queries by putting

a “jmp” instruction inside the

NtDll!NtQuerySystemInformation in-memory code. The

DKOM implementation of the FU rootkit presents a

unique challenge: it hides a process by removing its

corresponding entry from the Active Process List kernel

data structure. Since the list is only a “truth

approximation” for responding to process list queries and

does not necessarily reflect all the processes that own at

least one schedulable thread [YK04], a process can be

absent from the list while remaining fully functional. One

can even use the FU rootkit to hide the other process-

hiding ghostware programs to increase their stealth.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

Although less popular, administrator tools such as

Process Explorer [PE], AskStrider [WR+04] and tlist can

be used to enumerate all modules (e.g., DLLs) loaded by

each process and all drivers loaded by the system to detect

any suspicious entries. For example, AskStrider can be

used to quickly detect a Hacker Defender infection today

by revealing its unhidden hxdefdrv.sys driver. To hide its

modules from these tools and the underlying

Kernel32!Process32First(Next)!NtDll!NtQueryInformati

onProcess calling chain, the Vanquish rootkit blanks out

the pathname of vanquish.dll from the Process

Environment Block (PEB) module list in the per-process

memory.

For inside-the-box hidden-process detection, our tool

performs the high-level scan using the

NtDll!NtQuerySystemInformation API, and uses a driver

to perform the low-level scan by traversing the Active

Process List. A diff between these two scans can reveal

API-intercepting ghostware, but it cannot detect processes

hidden through DKOM because the low-level scan does

not contain the truth. To detect the latter, our tool supports

an advanced mode that performs the low-level scan by

traversing another kernel data structure that maintains the

process list to support OS functionalities other than

responding to enumeration queries. Similarly, to detect

hidden modules, our low-level scan extracts the truth of all

modules loaded by all processes from a kernel data

structure and compares that with the high-level API scan.

Outside-the-box scanning of volatile resources such as

processes and modules requires an additional step of

making the image of the relevant memory address space

available outside. Ideally, a PCI-add-in card as described

in the Copilot paper [PFM+04] or a Myrinet NIC as

described in the Bookdoors paper [BNG+04] should be

used to retrieve volatile data through Direct Memory

Access (DMA) without the knowledge or intervention of

the potentially infected OS. To allow users without the

extra hardware to use GhostBuster today, we obtain a

“truth approximation” by inducing a blue screen (i.e.,

kernel crash) to generate a memory dump file, and apply

similar kernel data structure traversal code to the dump file

to perform the outside-the-box scan. This is only an

approximation because future ghostware programs can

potentially trap the blue-screen events and remove all

traces of themselves from the memory dump.

Experimental Results

Figure 6 shows the results of GhostBuster detecting

four process-hiding and one module-hiding ghostware

programs. The first three, namely Aphex, Hacker

Defender, and Berbew, can be detected by using the

Active Process List as the truth, while FU can only be

detected by running GhostBuster in the advanced mode.

Since the hidden vanquish.dll is injected into many

processes, the GhostBuster report contains many such

entries.

The inside-the-box scanning and diff for the combined

hidden-process and hidden-module detection took between

1 and 5 seconds. It is conceivable that false positives can

be introduced if any process happens to get started or

terminated during that short interval, but we have not

encountered any false positives in our experiments so far.

For the outside-the-box scan, the kernel memory dump

through blue screen added 15 to 45 seconds.

5. Extensions

Ghostware Targeting Issues

It is possible for ghostware to target specific OS

utilities; for example, a process-hiding ghostware program

may choose to hide processes only from Task Manager

and tlist. The GhostBuster design described so far will not

detect such ghostware because the tool cannot experience

the hiding behavior. It is also possible for ghostware to

target GhostBuster so that resources are hiding from all

running programs except the GhostBuster process.

To address these two issues, we have implemented a

GhostBuster extension in the form of a DLL. Instead of

running the GhostBuster EXE that can be easily targeted,

we inject the GhostBuster DLL into every running process

and perform the scans and diff from inside each process,

essentially turning every process into a GhostBuster. In

particular, OS utilities such as Windows Explorer, Task

Manager, and RegEdit are now all GhostBusters. This

makes it more difficult for ghostware programs to target

GhostBuster, while hiding from common utilities.

Injecting GhostBuster into an anti-virus scanner is

particularly interesting. As a demonstration, we set up a

Hacker Defender-infected machine, installed the eTrust

anti-virus software, and ran the on-demand scanner. The

scanner could not detect Hacker Defender, even though it

did have the known-bad signatures. We then injected the

GhostBuster DLL into the scanner process InocIT.exe; that

allowed InocIT.exe to detect Hacker Defender’s hidden

entries. This combination creates a dilemma for malware

programs: they will be detected by GhostBuster if they

hide from InocIT.exe and by the eTrust signatures if they

do not hide.

Another potential attack on GhostBuster is to hide a

large number of innocent files, together with the ghostware

files. Although this would make it more difficult to

identify ghostware files, the GhostBuster tool still provides

effective detection of ghostware infection in this case

because the existence of a large number of hidden files is a

serious anomaly.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

Automating the Outside-the-box Solution

There are two extensions that can be implemented to

automate the outside-the-box ghostware detection and

greatly enhance its usability. In an enterprise environment,

the CD boot can be replaced by a network boot through the

Remote Installation Service (RIS) [RIS]: upon a reboot, a

client machine contacts the RIS server to obtain a network

boot loader, which then performs the outside-the-box scan

and diff.

Another approach is to use a Virtual Machine (VM):

we include a clean version of VM on the GhostBuster

WinPE CD and ask the user to boot the machine from the

CD. The GhostBuster process will automatically start and

insert an ASEP hook to the potentially infected boot drive

to enable auto-start of a high-level scan, and then launch a

VM instance to boot from that drive. Inside the VM

instance, the scanning code will save the scan result file

and notify the host machine of its completion. The host

machine then “powers down” the VM instance, grabs the

released infected drive, executes the outside-the-box

scanning code, removes the added ASEP hook, and

invokes the comparison code. If no hidden resource is

detected, the machine is rebooted normally into its boot

drive.

A similar technique can be used when the ghostware-

infected machine is in fact a VM. As a demonstration, we

set up a Hacker Defender-infected VM using the Virtual

PC software and performed an infected scan inside the

VM. We then “powered down” the VM and scanned the

virtual disk drive from the host machine using a utility that

allows a virtual drive to appear as a normal drive on the

host machine. A diff of the two scans revealed all the

hidden files and contained zero false positive because the

two scans were performed on exactly the same drive image

in such a VM setting.

Detecting Linux/Unix Ghostware

Similar ghostware problems exist on the Linux/Unix

platforms as well [PFM+04,YKS,YC,YW98,B99,YA03].

(In fact, the term “rootkit” originated from the root

privilege concept on Unix platforms.) A common

technique used by Linux/Unix ghostware programs to hide

resources is to intercept system calls to the kernel via a

Loadable Kernel Module (LKM) [ZK,YJ,J01]. For

example, some rootkits are known to hook read, write,

close, and the getdents (get directory entries) system calls.

More advanced rootkits can directly patch the kernel in

memory [YC98,YL01].

We have experimented with several file-hiding

rootkits including Darkside 0.2.3 [ZD] for FreeBSD, and

Superkit [ZS] and Synapsis for Linux. For the inside-the-

box high-level scan, we used the “ls” command to scan all

mounted partitions. For the outside-the-box scan, we used

the same command from the clean, bootable CD

distribution of the OS to scan the same set of partitions.

Our results showed that the cross-view diff reports

contained zero or very few false positives: in all cases, the

number of false positives was four or less, and they were

mostly temporary files and log files generated by system

daemons such as FTP. We also experimented with the

T0rnkit rootkit [ZT] that replaces OS utility programs with

trojanized versions. The GhostBuster approach could

detect its hidden files as well.

6. Conclusions

Stealth malware programs are becoming a serious

threat to the future of the Internet, and yet they have been

dealt with mostly in an ad-hoc fashion. In this paper, we

have described a cross-view diff-based framework for

systematic detection of ghostware programs that hide files,

Registry, processes, and loaded modules. We have

proposed using the inside-the-box diff of a high-level scan

and a low-level scan to provide an efficient, automatic

solution that can be run frequently to detect most of

today’s ghostware programs. Experimental results have

shown that it takes only seconds to detect hidden processes

and modules, tens of seconds to detect hidden critical

Registry entries, and a few minutes to detect hidden files.

In the case of Hacker Defender, the most popular

Windows rootkit today according to Product Support

Service engineers, we were able to deterministically detect

its presence within 5 seconds through hidden-process

detection, locate its hidden auto-start Registry keys within

one minute, remove the keys to disable the malware, and

reboot the machine to delete the now-visible files.

We have also proposed an outside-the-box, CD-boot

solution to detect more advanced ghostware that may

interfere with the inside-the-box scans. Experimental

results based on 12 real-world ghostware programs

showed that, while they employ a wide variety of resource-

hiding techniques, they can all be uniformly detected by

GhostBuster’s diff-based approach that targets the hiding

behavior and effectively turns the problem into its own

solution. False positives in a cross-view diff report are

minimal and can be easily filtered out.

As we pointed out in the Introduction, the problem

space of stealth software is broader than that of ghostware,

which has been our focus so far. Stealth software may hide

their persistent state in a form for which current OS does

not provide query/enumeration APIs or does not provide

common utilities that make use of such APIs. Examples

include hiding executable code inside the BIOS [YB],

video card EEPROM, boot sectors [D], bad disk sectors,

Alternate Data Streams (ADS), etc. Stealth software can

also hide their active running code in a form that cannot be

revealed by the process/module query APIs; they can

inject code into an existing process and hijack a thread to

execute that code. Detection of these advanced hiding

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

techniques is beyond the scope of this paper and we plan

to pursue them as future work.

As a final note, most of today’s Windows rootkits do

not modify OS files or memory image; rather, they

“extend” the OS through ASEP hooking in a way that is

indistinguishable from many other good software

programs that also extend the OS. Therefore, it is difficult

to apply the genuinity tests and software-based attestation

techniques that detect deviations from a known-good hash

of a well-defined OS memory range [KJ03,SPDK04]. On

the other hand, these techniques can detect both hiding and

non-hiding malware programs that modify the OS and are

complementary to the GhostBuster approach.

Acknowledgement

We would like to express our sincere thanks to David

Brumley, Aaron Johnson, Lee Yan, Bill Arbaugh, Dan

Simon, and Brad Daniels for their valuable discussions and

to the reviewers for their valueable comments. The MFT-

based technique was inspired by discussions with Robert

Hensing, and the implementation was based on the code

provided by Ed Elliott and Takefumi Kakimoto.

References

[AID] Working with the AppInit_DLLs registry value,

http://support.microsoft.com/kb/q197571/.

[B99] D. Brumley, “Invisible Intruders: Rootkits In Practice,”

;login: The Magazine of USENIX and SAGE,

http://www.usenix.org/publications/login/1999-

9/features/rootkits.html, 1999.

[BNG+04] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L.

Iftode, “Remote Repair of Operating System State Using

Backdoors,” in Proc. Int. Conf. on Autonomic Computing

(ICAC), pp. 256-263, May 2004.

[D] Chapter 7 - Disk, File System, and Backup Utilities,

Microsoft TechNet,

http://www.microsoft.com/technet/prodtechnol/winntas/suppor

t/utilitys.mspx.

[HB99] Galen Hunt and Doug Brubacher. “Detours: Binary

Interception of Win32 Functions,” in Proc. the 3rd Usenix

Windows NT Symposium, pp. 135-143, July 1999

(http://research.microsoft.com/sn/detours/).

[IFS] IFS Kit - Installable File System Kit,

http://www.microsoft.com/whdc/devtools/ifskit/default.mspx.

[J01] K. Jones, “Loadable kernel modules,” ;login: The Magazine

of USENIX and SAGE,

http://www.usenix.org/publications/login/2001-

11/pdfs/jones2.pdf, Nov. 2001.

[KJ03] Rick Kennell and Leah H. Jamieson, “Establishing the

Genuinity of Remote Computer Systems,” In Proc. USENIX

Security Symposium, August 2003.

[KS94] G. H. Kim and E. H. Spafford, “The Design and

Implementation of Tripwire: A File System Integrity

Checker,” in Proc. of the 2
nd

 ACM Conf. on Computer and

Communications Security, pp. 18-29, Nov. 1994.

[MSDN] Naming a File,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/fileio/base/naming_a_file.asp.

[PE] Process Explorer,

http://www.sysinternals.com/ntw2k/freeware/procexp.shtml.

[PF] How to Disable the Prefetcher Component in Windows XP,

http://support.microsoft.com/?kbid=307498.

[PFM+04] Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina,

and William A. Arbaugh, “Copilot - a Coprocessor-based

Kernel Runtime Integrity Monitor,” in Proc. Usenix Security

Symposium, Aug. 2004.

[R00] John Robbins, Debugging Applications, 2000.

[RIS] Remote Installation Services,

http://www.microsoft.com/windows2000/en/datacenter/help/de

fault.asp?url=/windows2000/en/datacenter/help/sag_RIS_Defa

ult_topnode.htm.

[SPDK04] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla,

“SWATT: SoftWare-based ATTestation for Embedded

Devices,” in Proc. IEEE Symp. on Security and Privacy, May

2004.

[SR] Windows XP System Restore,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnwxp/html/windowsxpsystemrestore.asp.

[SRM] System Restore Monitored File Extensions,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/sr/sr/monitored_file_extensions.asp.

[SR00] D. A. Solomon and M. E. Russinovich, Inside Microsoft

Windows 2000, Third Edition, 2000.

[W04] “Strider GhostBuster: Why It's A Bad Idea For Stealth

Software To Hide Files,” Yi-Min Wang, Usenix Security

Symposium, Work-in-Progress Report presentation,

http://www.usenix.org/events/sec04/tech/wips/, Aug. 2004.

[WPE] Microsoft Windows Preinstallation Environment

(Windows PE),

http://www.microsoft.com/licensing/programs/sa/support/winp

e.mspx.

[WR+04] Yi-Min Wang, et al., "AskStrider: What Has Changed

on My Machine Lately?", Microsoft Research Technical

Report MSR-TR-2004-03, Jan. 2004.

[WRV+04] Yi-Min Wang, Roussi Roussev, Chad Verbowski,

and Aaron Johnson, “Gatekeeper: Monitoring Auto-Start

Extensibility Points (ASEPs) for Spyware Management,” in

Proc. Usenix LISA, Nov. 2004.

[WVD+03] Yi-Min Wang, et al., “STRIDER: A Black-box,

State-based Approach to Change and Configuration

Management and Support,” Proc. Usenix Large Installation

Systems Administration (LISA) Conference, pp. 159-171,

October 2003.

[WVS03] Yi-Min Wang, Chad Verbowski, and Daniel R. Simon,

"Persistent-state Checkpoint Comparison for Troubleshooting

Configuration Failures", in Proc. IEEE DSN, June 2003.

[WVR+04] Yi-Min Wang, Binh Vo, Roussi Roussev, Chad

Verbowski, and Aaron Johnson, “Strider GhostBuster: Why

It’s A Bad Idea For Stealth Software To Hide Files,” Microsoft

Research Technical Report MSR-TR-2004-71, July 2004.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

[XA04] “Alarm growing over bot software,” (DOS attacks),

CNET News.com, http://news.zdnet.com/2100-1009_22-

5202236.html, April 2004.

[XG03] “Guilty Plea in Kinko's Keystroke Caper,” (stealing

online banking passwords), Security Focus, July 18, 2003.

[XG04] “Gone Phishing: Web Scam Takes Dangerous Turn,”

(stealing online banking passwords), Wall Street Journal, May

27, 2004.

[XP03] Kevin Poulsen, “Windows Root Kits a Stealthy Threat,”

SecurityFocus, http://www.securityfocus.com/news/2879, Mar

5 2003.

[XP04] “Phishers tapping botnets to automate attacks”,

(phishing), The Register,

http://www.theregister.co.uk/2004/11/26/anti-phishing_report/,

Nov. 26, 2004.

[XS04] “Spreading Web Virus Aims to Steal Financial Data,”

Reuters, June 25, 2004.

[XW04] “White collar virus writers make cash from chaos,”

(dialers, spamming), The Register,

http://www.theregister.co.uk/2004/12/07/sophos_av_review_2

004/, Dec. 2004.

[XZ04] “Zombie PCs: Silent, Growing Threat,” PC World,

http://www.pcworld.com/news/article/0,aid,116841,00.asp,

July 2004.

[YA03] A. Chuvakin, “An Overview of Unix Rootkits,” iALERT

White Paper, iDefense Labs,

http://www.megasecurity.org/papers/Rootkits.pdf, February

2003.

[YB] BIOS and Flash Utilities,

http://h20000.www2.hp.com/bizsupport/TechSupport/DriverD

ownload.jsp?pnameOID=100870&locale=en_US&taskId=135

&refresh=true&prodTypeId=12454&prodSeriesId=96495&sw

EnvOID=1093#2663.

[YB04] C. Boyd, “Xpire/Splitinfinity.info Server Hack and

Malware injection using IFRAMES Vulnerability – Condensed

Version,” http://www.spywarewarrior.com/xpire-splitinfinity-

serverhack_malwareinstall-condensed.pdf.

[YC] The chkrootkit tool, http://www.chkrootkit.org/.

[YC04] “Nasty New Parasite,” (stealth spyware), Spyware

Weekly Newsletter,

http://www.spywareinfo.com/newsletter/archives/0604/8.php,

June 8, 2004.

[YC98] Silvio Cesare, “Runtime kernel kmem patching,”

http://vx.netlux.org/lib/vsc07.html, Nov. 1998.

[YH] Hidden Registry Keys,

http://www.sysinternals.com/ntw2k/info/tips.shtml#registryhid

den.

[YH03] “How to become unseen on Windows NT,”

http://rootkit.host.sk/knowhow/hidingen.txt, May 8, 2003.

[YI] Ivo Ivanov, “API hooking revealed”,

http://www.codeproject.com/system/hooksys.asp.

[YJ] A. R. Jones, “A Review of Loadable Kernel Modules,”

http://www.giac.org/practical/gsec/Andrew_Jones_GSEC.pdf.

[YK] Tan Chew Keong, “ApiHookCheck Version 1.01,”

http://www.security.org.sg/code/apihookcheck.html, April 15,

2004.

[YK04] Tan Chew Keong, “Win2K Kernel Hidden

Process/Module Checker 0.1 (Proof-Of-Concept),”

http://www.security.org.sg/code/kproccheck.html, May 23,

2004.

[YKS] KSTAT - Kernel Security Therapy Anti-Trolls,

http://s0ftpj.org/en/tools.html.

[YL01] “Linux on-the-fly kernel patching without LKM”,

http://www.phrack.org/phrack/58/p58-0x07, Phrack Magazine,

Dec. 2001.

[YN04] “NTIllusion -- A portable Win32 userland rootkit.txt,”

Phrack Magazine, July 13, 2004.

[YO03] OpioN, “Kernel Rootkits Explained”,

http://www.ebcvg.com/articles.php?id=124, March 2003.

[YT04] C. K. Tan, “Defeating Kernel Native API Hookers by

Direct Service Dispatch Table Restoration,”

http://www.security.org.sg/code/SIG2_DefeatingNativeAPIHo

okers.pdf, July 2004.

[YV04] VICE – Catch the hookers!

http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-

butler/bh-us-04-butler.pdf.

[YW98] “Weakening the Linux Kernel,” Phrack Magazine,

http://www.phrack.org/phrack/52/P52-18, Jan. 1998.

[ZA] API Hook SDK 2.12,

http://www.devarchive.com/f1709.html.

[ZAF] Aphex – AFX Windows Rootkit 2003,

http://www.iamaphex.cjb.net.

[ZAH] Advanced Hide Folders, http://www.hide-folders.biz/.

[ZB] Berbew,

http://securityresponse.symantec.com/avcenter/venc/data/back

door.berbew.j.html.

[ZD] Darkside rootkit, http://www.antiserver.it/backdoor-rootkit/.

[ZF] File & Folder Protector, http://www.softheap.com/ffp.html.

[ZFU] The FU Rootkit,

http://www.rootkit.com/vault/fuzen_op/FU_Rootkit.zip.

[ZH] Hacker Defender, http://rootkit.host.sk/.

[ZHF] Hide Files 3.3,

http://www.tomdownload.com/new_add/new20031128/hide_fi

les_folders.htm.

[ZHO] Hide Folders XP, http://www.fspro.net/downloads.html.

[ZK] Knark LKM-rootkit,

http://www.sans.org/resources/idfaq/knark.php.

[ZP] ProBot SE Monitoring Software,

http://www.nethunter.cc/index.php?id=14.

[ZR] RootKits, http://www.rootkit.com/.

[ZS] Superkit rootkit,

http://www.remoteassessment.com/darchive/191006794.html.

[ZT] The T0rnkit rootkit, http://www.europe.f-secure.com/v-

descs/torn.shtml.

[ZU] The Urbin Trojan,

http://vil.nai.com/vil/content/v_125663.htm.

[ZV] Vanquish, https://www.rootkit.com/project.php?id=9.

[ZVI] Vice, http://www.rootkit.com/project.php?id=20.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

Inside-the-box Solution

(i.e., boot into the OS potentially infected with ghostware)

Outside-the-box Solution

(i.e., boot into a clean OS not infected

with ghostware)

The Truth

Truth Approximation

Truth Approximation

High-level Scan

Low-level Scan

Outside-the-box Scan

Diff

Diff

Ghostware Hiding Mechanism

Win32 APIs

Master File Table

Raw Hive Files

Kernel Process List

Figure 1. Strider GhostBuster: Combining Inside-the-box and Outside-the-box Scans and Diffs.

Cmd!Dir

Kernel32!FindFirst(Next)File

Import Address Table (IAT)

Kernel32!FindFirst(Next)File

NtDll!NtQueryDirectoryFile

Nt!NtQueryDirectoryFile

I/O Manager

File System Components

Nt!NtQueryDirectoryFile

Service Dispatch Table Entry

Urbin &

Mersting

Vanquish

Aphex

Hacker

Defender

ProBot SE

Driver

Filter Driver

For the Four

File Hiders

User mode

Kernel mode

Figure 2. How Ghostware Programs Hide Files

Ghostware Hidden Files Detected

Urbin [ZU] 1 (C:\windows\system32\msvsres.dll)

Mersting 1 (C:\windows\system32\kbddfl.dll)

Vanquish [ZV] 3+ (C:\windows\vanquish.exe, C:\windows\vanquish.dll,

C:\vanquish.log, and any other “*vanquish*” files)

Aphex [ZAF] Any files with names matching a configurable prefix

Hacker Defender 1.0 [ZH] 3+ (hxdef100.exe, hxdefdrv.sys, hxdef100.ini, and any other files with

names matching the patterns specified in hxdef100.ini)

ProBot SE [ZP] 4 (C:\windows\system32\<random name>.exe,

C:\windows\system32\<random name>.dll, and two

C:\windows\system32\drivers\<random name>.sys files)

File hiders [ZHF,ZHO,ZAH,ZF] Any user-selected folders and files

Figure 3. Experimental Results for GhostBuster Hidden-File Detection

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

Ghostware Hidden ASEP Hooks Detected

Urbin HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs

! msvsres.dll

Mersting HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs

! kbddfl.dll

Hacker

Defender 1.0

HKLM\SYSTEM\CurrentControlSet\Services\HackerDefender100! hxdef100.exe

HKLM\SYSTEM\CurrentControlSet\Services\HackerDefenderDrv100! hxdefdrv.sys

Vanquish HKLM\SYSTEM\CurrentControlSet\Services\Vanquish! vanquish.exe

ProBot SE HKLM\SYSTEM\CurrentControlSet\Services\<random name>

! System32\drivers\<random name>.sys

HKLM\SYSTEM\CurrentControlSet\Services\<random name>

! <random name>.sys keyboard driver

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run! <random name>.exe

Aphex HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run! <user defined name>.exe

Figure 4. Experimental Results for GhostBuster Hidden ASEP Hook Detection.

TaskMgr

NtDll!NtQuerySystemInformation

Import Address Table (IAT)

NtDll!NtQuerySystemInformation

Nt!NtQuerySystemInformation

Active Process List

Nt!NtQuerySystemInformation

Service Dispatch Table Entry

Aphex
Hacker

Defender

& Berbew

FU Driver

User mode

Kernel mode

Figure 5. How Ghostware Programs Hide Processes.

Ghostware Hidden Processes/Modules Detected

Aphex By default, any process with a “~~”-prefixed name (which is configurable)

Hacker Defender 1.0 hxdef100.exe, and any other processes with names matching the patterns specified

in hxdef100.ini

Berbew [ZB] <random name>.exe

FU [ZFU] Any process hidden by the “fu –ph <PID>” command

Vanquish vanquish.dll (hidden inside many processes)

Figure 6. Experimental Results for GhostBuster Hidden Processes/Modules Detection.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

