
OPCODES AS PREDICTOR FOR MALWARE

Daniel Bilar
Department of Computer Science, Wellesley College, Massachusetts, USA

dbilar@wellesley.edu

Abstract: This paper discusses a detection mechanism for malicious code through statistical analysis of opcode
distributions. 67 malware executables were sampled statically disassembled and their statistical opcode
frequency distribution compared with the aggregate statistics of twenty non-malicious samples. We find that
malware opcode distributions differ statistically significantly from non-malicious software. Furthermore, rare
opcodes seem to be a stronger predictor, explaining 12-63% of frequency variation.

1. Motivation:

World-wide financial damages induced by
malware passed the $US10b mark in 1999; they
had been averaging around US$14b for the last
seven years (Computer Economics, 2007). In the
same time span, the host base (end systems with
an IP address) grew from 56m to roughly 440m,
according to one estimate (Zakon, 2006).
Viewed in conjunction with the smaller relative
growth in damages, these numbers – if roughly
correct - could be interpreted as a success story
for signature-based anti-viral (AV) software,
which is routinely deployed on personal
computers nowadays.
However, malware is evolving, and initial AV
detection rates for recent modern malware do
not look reassuring. In February 2007, for
instance, seventeen state-of-the-art, updated AV
scanners were checked against twelve well-
known, previously submitted, highly
polymorphic and metamorphic malware
samples. The miss rate was 100% to 0%, with an
average miss rate of roughly 38% (Clementi,
2007). The theoretical aspects of such
metamorphic self-reproducing programs were
presciently laid out 27 years ago (Kraus, 1980)
and the emerging practical deployment of such
malware predicted in 2001 (Szor, 2001).

2. Introduction:

The goal of this paper was to compare opcode
distributions of malicious and non-malicious
software and give a preliminary assessment of
its usefulness for detection and differentiation of

modern (polymorphic and metamorphic)
malware. Polymorphic malware contain
decryption routines which decrypt encrypted
constant parts of the malware body. The
malware can mutate its decryptors in subsequent
generations, thereby complicating signature-
based detection approaches. The decrypted
body, however, remains constant.
Metamorphic malware generally do not use
encryption, but are able to mutate their body in
subsequent generation using various techniques,
such as junk insertion, semantic NOPs, code
transposition, equivalent instruction substitution
and register reassignments (Christodorescu,
2003) (Szor, 2005, pp.256-270) .
The net result of these techniques is a
continuously staler (time-sensitive) signature
base suitable for pattern-based detection
approaches, as recent server-side polymorphic
malware proliferation amply demonstrated
(Commtouch, 2007).
Since signature-based approaches are quite fast
(but show little tolerance for metamorphic and
polymorphic code) and heuristics such as
emulation are more resilient (but quite slow and
may hinge on environmental triggers), a
detection approach that combines the best of
both worlds would be desirable. This is the
philosophy behind a structural fingerprint.
Structural fingerprints are statistical in nature,
and as such are positioned as ‘fuzzier’ metrics
between static signatures and dynamic
heuristics.
The structural fingerprint considered in this
paper is based on the extended x86 IA-32 binary
assembly instructions without arguments, from

random software samples, blocked for criteria
described below. Section 3 gives a review and
an evaluation of related classification and
detection research. Sections 4 and 5 outline the
sampling, opcode extraction and statistical
testing procedures. Sections 6, 7, 8 and 9 discuss
findings, improvements to the presented
approach, malware on the horizon and
contributions of this research, respectively.

3. Related Work:

Explicitly statistical analysis’ of structural
features of binaries files were undertaken by (Li,
2005) and (Weber, 2002). Li et al used 1-gram
analysis of binary byte values (not opcodes) to
generate a fingerprint (a ‘fileprint’) for file type
identification and classification purposes. Weber
et all start from the assumption that compiled
binaries exhibit homogeneities with respect to
several structural features such as instruction
frequencies, instruction patterns, memory
access, jump/call distances, entropy metrics and
byte-type probabilities and that tampering by
malware would disturb these homogeneities.
They indicated having implemented a
comprehensive PE Analysis Toolkit (‘PEAT’)
and tested it on several malware samples. Sadly,
no results beyond some tantalizing morsels are
given. Attempts to contact the authors for a
version of PEAT were also unfortunately for
naught.

Further static and dynamic malware
investigations were undertaken by (Chinchani,
2005) (Rozinov, 2005) and (Polychronakis,
2006) (Ries, 2005) (Bilar, 2007) (Bayer, 2006),
respectively. Chinchani et al implemented an
involved scheme for statically detecting exploit
code of a certain general structure (NOP sled,
payload, return address) in network streams by
analyzing data and control flow information.
They reported robust results vis-à-vis
metamorphic malware.
With an eye towards detection of self-contained
polymorphic shellcode, Polychronakis et al
implemented a full-blown NIDS-embedded x86
emulator that speculatively executes potential
instruction sequences in the network stream to
compare it against polymorphic shellcode
behaviour.
Their tuned behavioural signature is partly
opcode-sequence based: An execution chain

containing either a call, fstenv, or fsave

instruction, followed by a read from the memory
location where the instruction pointer was stored
as a result of one of the above instructions,
followed by some tuned number of specific
memory reads is interpreted as shellcode. They
validated their nifty scheme against thousands of
shellcode instances created by ten different
state-of-the-art polymorphic shellcode engines,
with zero false negatives.
Bayer and Ries’ behavioural analysis
implementations took a different approach: They

Opcode Goodware Kernel RK User RK Tools Bot Trojan Virus Worms

mov 25.3% 37.0% 29.0% 25.4% 34.6% 30.5% 16.1% 22.2%

push 19.5% 15.6% 16.6% 19.0% 14.1% 15.4% 22.7% 20.7%

call 8.7% 5.5% 8.9% 8.2% 11.0% 10.0% 9.1% 8.7%

pop 6.3% 2.7% 5.1% 5.9% 6.8% 7.3% 7.0% 6.2%

cmp 5.1% 6.4% 4.9% 5.3% 3.6% 3.6% 5.9% 5.0%

jz 4.3% 3.3% 3.9% 4.3% 3.3% 3.5% 4.4% 4.0%

lea 3.9% 1.8% 3.3% 3.1% 2.6% 2.7% 5.5% 4.2%

test 3.2% 1.8% 3.2% 3.7% 2.6% 3.4% 3.1% 3.0%

jmp 3.0% 4.1% 3.8% 3.4% 3.0% 3.4% 2.7% 4.5%

add 3.0% 5.8% 3.7% 3.4% 2.5% 3.0% 3.5% 3.0%

jnz 2.6% 3.7% 3.1% 3.4% 2.2% 2.6% 3.2% 3.2%

retn 2.2% 1.7% 2.3% 2.9% 3.0% 3.2% 2.0% 2.3%

xor 1.9% 1.1% 2.3% 2.1% 3.2% 2.7% 2.1% 2.3%

Table 1: Comparison of the 14 most frequent opcodes

ran the malware dynamically in a sandbox,
record security-relevant Win32 API calls, and
constructed a syscall-based behavioural
fingerprint for malware identification and
classification purposes. Rozinov, on the other
hand, located calls to the Win32 API in the
binary itself: While Ries and Bayer recorded the
malware’s system calls dynamically during
execution, Rozinov statically disassembled and
simplified the malware binary via slicing,
scanned for Win32 API calls and constructed an
elaborate Finite State Automaton signature for
later detection purposes.
Recently, graph-based structural approaches
gained some traction. (Flake, 2005) proposed a
simple but effective signature set to characterize
statically disassembled binaries: Every function
in the binary was characterized by a 3-tuple
(number of basic blocks in the function, number
of branches, and number of calls). These sets
were used to compare malware variants and
localize changes. (Bilar, 2007) examined the
static callgraphs of 120 malicious and 280 non-
malicious executables. He fitted Pareto models
to the in-degree, out-degree and basic block
count distributions, and found a statistically
significant difference for the derived power law
exponent of the basic block count fit. He
concluded that malware tended to have a lower

basic block count than non-malicious software,
implying a simpler structure: Less interaction,
fewer branches, and more limited functionality.
In an exemplary exposition for the purposes of
worm detection, (Kruegel, 2006) extracted
control flow graphs from executable code in
network streams, augmented them with a
colouring scheme, identified k-connected
subgraphs that were subsequently used as
structural fingerprints. He evaluated his scheme
offline against 342 malware samples from 93
distinct families.
The general problem with pattern-based
approaches is not accuracy; the individual
classifiers can be tuned to the desired false
negative or positive rates. The problem is really
one of practical detection speed: As the
adversarial dissimulation techniques of malware
continue to evolve, computational complexity
issues (Spinellis, 2003) will soon show the
practical limits of the more involved emulation
and parsing schemes. Structure-based
approaches (based on opcode frequencies and
callgraph structures, for instance) may capture
enough semantic richness to detect dissimulated
malware without the necessity of full-blown
emulation.

Opcode Goodware Kernel RK User RK Tools Bot Trojan Virus Worms

bt 30 0 34 47 70 83 0 118

fdvip 37 0 0 35 52 52 0 59

fild 357 0 45 0 133 115 0 438

fstcw 11 0 0 0 22 21 0 12

imul 1182 1629 1849 708 726 406 755 1126

int 25 4028 981 921 0 0 108 0

nop 216 136 101 71 7 42 647 83

pushf 116 0 11 59 0 0 54 12

rdtsc 12 0 0 0 11 0 108 0

sbb 1078 588 1330 1523 431 458 1133 782

setb 6 0 68 12 22 52 0 24

setle 20 0 0 0 0 21 0 0

shld 22 0 45 35 4 0 54 24

std 20 272 56 35 48 31 0 95
Table 2: Comparison of rare opcodes (in parts per million)

Table 3: z-scores for frequent (top) and rare (bottom) opcodes

4. Extracting Opcodes:

The first step consisted of gathering random
samples of malicious and non-malicious
(‘goodware’) binaries. For goodware, sampling
followed a two step process: An inventory of all
PE exe files on a MS XP Home box was
gathered by Advanced Disk Catalog (Elcomsoft,
2004). A preliminary binary file size distribution
investigation yielded a log-normal distribution;
for an in-depth explanation of the underlying
generative processes, see (Mitzenmacher, 2003)
and (Limpert, 2001). Twenty executables were
uniformly sampled into four size blocks, five
samples per block.
The size intervals were chosen as [0-10KB),
[10-100K), [100-1K) and [1M-10M]; with
square bracket and parenthesis denoting closed
and open endpoints, respectively.
For malware, seven classes of interest were
fixed (kernel-mode rootkit, user-mode rootkit,
tool, bot, trojan, virus, and worm). Chris Ries’
collection (Ries, 2005) of 77 malware specimens

was inventoried and 67 PE binaries (exe and

dll) sampled into the seven classes of interest,

with at least five unpacked samples per class.
The malware specimens included variants of
Apost, Banker, Nibu, Tarno, Beagle, Blaster,
Frethem, Gibe, Inor, Klez, Mitgleider,
MyDoom, MyLife, Netsky, Sasser, SDBot,
Moega, Randex, Spybot, Pestlogger and
Welchia.
Figure 1 illustrates the analysis workflow after
the sample selection for malware; for goodware
it follows essentially the same steps.
The samples were subsequently loaded into the
de-facto industry standard disassembler, IDA
Pro (DataRescue, 2006), in which a modified
plugin, InstructionCounter (Porst, 2005), was
run which extracted opcode statistics from the
samples. An underground tool, PEiD (jibz,
2006), was used to augment the dataset with
compiler and packer information, if applicable
and identifiable. For goodware, a ‘functionality
class’ (e.g. file utility, IDE, network utility, etc)
was added manually to the dataset.
These datasets were parsed with a Java program
and the JAva MAtrix numerical analysis package
(Mathworks, 2005). From the datasets, a list of

opcodes was constructed, and the datasets
normalized for further analysis in MS Excel. All
this was run on MS Windows XP Pro in the
virtual environment provided by VMPlayer
(VMWare, 2005), following best practices in
malware analysis (Szor, 2005, pp. 611-655).

4.1. Opcode Breakdown:

A list of opcodes was gathered from the samples
and augmented with the entries in (Wikipedia,
2006), totalling 398 IA-32 opcodes.
The goodware samples yielded roughly 1.5m
opcodes, and 192 different opcodes were found.
72 opcodes accounted for >99.8% of opcodes
found, 14 opcodes accounted for ~90%, and the
top 5 opcodes accounted for ~64% of extracted
opcodes. Figure 2 shows the opcode breakdown
graphically for the 14 most frequent opcodes for
goodware.
The aggregate malware samples yielded roughly
665,000 opcodes. 141 different opcodes were

found, including two undocumented ones, salc

and icebp. Sixty opcodes accounted for

>99.8% of opcodes found, 14 opcodes
accounted for 92%, and the top 5 opcodes
accounted for 65% of the extracted opcodes.
Figure 3 shows the opcode breakdown for the 14
most frequent opcodes for malware (aggregated
across classes).

Figure 1: Analysis setup and workflow

Figure 2: Most frequent 14 opcodes for goodware

We see that the top five listings for both

malware and goodware are identical (mov,

push, call, pop, cmp) and some minor rank

permutations in the lower rankings.
A more granular proportional breakdown of the
most frequent opcodes – specifically along the
seven malware classes of interest - is shown in
Table 1.

Figure 3: Most frequent 14 opcodes for malware

5. Statistical Analysis:

Frequency data in form of a 8*14 contingency
table (rows: opcode, columns: binary classes) in
and, three questions were formulated:

1a) Is there a statistically significant difference

in opcode frequency between goodware and the
seven malware classes of interest ?

1b) If there is a statistically significant

difference, which opcode(s) is or are responsible

for it?

2) How strong is the association between

malware class and opcodes?

Statistical testing was used to shed some light on
questions 1) and 2). Question 1a) was tested
using Pearson’s Chi Square procedure; for 1b)
this was followed by a post-hoc standardized
residual (STAR) testing of individual cells
(Haberman, 1973).
The chi-square test examined the association
between the row and column variables in a two-
way table. The null hypothesis H0 assumed no
association between the variables (in other
words, software class had no bearing on opcode
frequency). The alternative hypothesis HA
claimed that some association existed.
The STAR post-hoc statistic is a z-score,
asymptotically normal N(0,1) under the null
hypothesis H0 of independence, and indicates
the H0 fit for the individual cell. (Kim, 2006).
Question 2) was tested using Cramer’s V, a
measure of association strength or dependency
between two categorical variables in a
contingency table (Woo, 2005).

Table 4: Association strength between opcodes and malware classes. Rare opcodes (bottom) showed stronger
association than more frequent ones (top).

5.1. Most Frequent Opcodes:

The first investigation focussed on the most
frequent opcodes, as listed in Table 1. Table 3
(top) lists z-scores assessing opcode and
malware class independence and Table 4 (top)
shows the strength of the association. Cells are
colour-coded for easier interpretation. The cut-
off point for deviation was chosen as zc = 5.
White cells indicate that there is no significant
deviation from H0, bright red and blue indicate a
much higher or lower occurrence of the
particular opcode, as indicated by their very high
or low z-scores.
Compared to non-malicious binaries, roughly
1/3 of the cells exhibited similar, 1/3 higher and
1/3 lower opcode frequencies. Speculations
about these results were given in the side notes
of Table 4 (top). It should be noted that these
merit further investigation and should be taken
as hypotheses.

5.2. Rare Opcodes:

Rare opcodes were not pruned akin to the most
common opcodes; the frequency of the 14 rarest
opcodes is zero for practically all cells. The rare
opcodes listed in Table 2 were chosen uniformly
at random among the population of opcode with
frequency occurrences under 0.2% of total
opcodes.
Table 3 (bottom) lists z-scores assessing opcode
and malware class independence, and Table 4
(bottom) shows the strength of the association.
Again, cells are colour-coded for easier
interpretation. The cut-off point for deviation
was chosen to be zc = 3, more sensitive than for
frequent opcodes because of the very small
number of occurrences.
Compared to non-malicious execuatbles,
roughly 70% of the cells exhibited similar, 30%
higher and 10% lower opcode frequencies.
Again, some preliminary hypotheses about the
nature of these results were given in the side
notes.

6. Discussion of Results:

Cramer’s V can be interpreted as how much of
the association can be explained without
reference to other factors (Connor-Linton,
2003). For the case of the most common 14
opcodes, we see that opcodes were a relative
weak predictor, explaining just 5-15% of the
frequency variation. For the rarer 14 opcodes,
the association was much stronger. The
association between rare opcodes and malware
explained 12-63% of the frequency variation
(see Table 4).
In sum, malware opcode frequency distribution
seems to deviate significantly from non-
malicious software. Rarer opcodes seem also to
explain more frequency variation then common
ones.

7. Further Improvements:

Improvements to this approach can be
undertaken along several lines. From the
statistical testing point of view, further control
procedures refinements for false discovery rate
and type I errors, along the lines of (Kim, 2006,
pp. 74-79) seem promising. Furthermore, the
scope of the study could be broadened by
analyzing n-way association (as opposed to 2-
way) of factors.
Other factors beyond atomic opcodes such as
compiler type (MS, Watcom, Delphi, gcc etc),
opcodes classes (transfer, control flow,
arithmetic, extensions etc) may yield some
insight, as well. Inspired by the opcode-
sequence based detection signatures of
(Polychronakis, 2006), enriching the opcode
factor beyond isolated opcodes to semantic
‘nuggets’ (positioned size-wise between atomic
opcodes and basic blocks) may be a good idea.
Also, specific investigation of malware which
implements conventional (Christodorescu, 2003)
and ‘targeted’ obfuscation techniques
(Yamauchi, 2006) may shed further light on the
predictive value of opcode frequency
distribution analysis. Finally, a time-series

analysis of selected opcodes (like nop,

sysenter, icebp) may be another way of

discerning tell-tale trends and worth a try.

8. Malware on the Horizon:

It is hard to gauge how much mileage pattern-
matching based AV detection techniques still
have in them in light of these polymorphic and
metamorphic threats. Some industry researchers
are optimistic, maybe unduly so (Emm, 2007).
We briefly mention k-ary malware, a most
worrisome development, in this context. K-ary
malware, of which at this time only laboratory or
very trivial examples are known to exist, seem
able to elude conventional deployed defences in
principle, not just in practice (Filiol, 2007).
This feat is accomplished by partitioning the
malware’s functionality spatio-temporally into k
distinct parts, with each part containing merely
an innocuous subset of the total instructions. In
serial or parallel combination, they subsequently
become active. Current AV models seem unable
to detect this threat (or disinfect completely
upon detection), which may be due to
fundamental theoretical model assumptions
(Filiol, 2006).
In light of existing and emerging malware,
developing new models and methods is prudent.
In the theoretical realm, this may entail moving
beyond Turing machine models premised on the
strong Church-Turing thesis (“computation-as-
functions”) towards more expressive models
premised on “Interactive Computations”
(Goldin, 2005). Interestingly, the necessity for a
theoretical evolution was foreshadowed by
Turing in his 1936 paper with his choice ‘c-
machine’, as opposed to the standard automatic
‘a-machine' (Turing, 1936).

9. Contributions of this Research:

We investigated opcode frequency distributions
as a means to identify and differentiate malware.
The scientific contribution of this research
includes descriptive opcode frequency data for a
medium-sized sample of malicious and non-
malicious executables. The testing procedures
went beyond standard Chi-Square tests in an

attempt to isolate the opcodes that are most
strongly associated with certain malware classes.
Furthermore, we gave a quantitative statistical
measure of how strong this association might be.
The applications of these findings are of interest
to several problem domains: AV scanners and
intrusion prevention systems may get a fast first-
pass criterion for on-demand, run-time execution
and in-transit scanning.
Finally, these results and the synopsis of related
work may stimulate further development and
refinement of forensic tools such as Encase
Forensics Law Enforcement (Guidance, 2006)
and FTK (AccessData, 2005) for the benefit of
law enforcement investigations and cyber-crime
thwarting efforts.

10. Acknowledgments:

This paper is a revised and expanded version of
a paper given at the 3rd International Conference
in Global E-Security (London, UK). I thank
Franklyn Turbak (Wellesley College) for
germinating the time series idea and the
anonymous reviewers for their helpful
comments.

11. References:

AccessData Inc. Forensic Toolkit, Lindon, (UT),
2005

Bayer U., Kruegel C., Kirda E., “TTAnalyze: A
Tool for Analyzing Malware”, Proceedings of
the 15th Annual Conference of the European

Institute for Computer Antivirus Research

(EICAR), Hamburg (Germany), April 2006

Bilar D., “Callgraph properties of executables”,

AI Communications: Special Issue on

Network Analysis in Natural Sciences and

Engineering, Amsterdam (NL), 2007

Christodorescu M., Jha S., “Static analysis of
executables to detect malicious patterns”,
Proceedings of the 12th USENIX Security

Symposium, Washington (DC), August 2003, pp.
169–186

Chinchani R., Berg E. V. D., “A fast static
analysis approach to detect exploit code inside
network flows”, Proceedings of the

International Symposium on Recent Advances in

Intrusion Detection (RAID), Seattle (WA),
September 2005

Clementi A., Anti-Virus Comparative No. 13,
Innsbruck (Germany), February 2007, p. 7

Computer Economics Inc., 2007 Malware

Report: The Economic Impact of Viruses,

Spyware, Adware, Botnets, and Other Malicious

Code, Irvine (CA), 2007

Commtouch Inc., Malware Report: Server-side

Polymorphic Viruses Surge Past AV Defenses,
Netanya (Israel), 2007

Connor-Linton J., Chi Square Tutorial,
Georgetown University, Washington (DC)
March 2003

DataRescue sa/nv, IDA - The Interactive

Disassembler, Liege (Belgium), v5.0.0.879,
2006

Elcomsoft Co. Ltd., Advance Disk Catalog,
Moscow (Russia), v.1.51, October 2004

Emm D., “AV is alive and well”, Virus Bulletin,
Abingdon (UK), September 2007, p.2

Everitt B.S, The Analysis of Contingency Tables,
Chapman & Hall, New York, February 1992
(2nd Ed.)

Filiol E, Helenius M., Zanero S, “Open
problems in computer virology”, Journal in
Computer Virology (Vol 1. No.3&4), Paris
(France) , March 2006, pp.55-66

Filiol, E, “Formalization and implementation
aspects of K-ary (malicious) codes”, Journal in
Computer Virology (Vol. 3, No.2), Paris
(France), June 2007

Flake H., “Compare, Port, Navigate”, Black Hat

Europe 2005 Briefings and Training,
Amsterdam (Holland), March 2005

Goldin D., Wegner, P., “The Church-Turing
Thesis: Breaking the myth”, Lecture Notes in
Computer Science (Vol. 3526), Berlin
(Germany), 2005, pp. 152-168

Guidance Software, Encase Forensics LE, v. 5,
Pasadena (CA), February 2006

Haberman S., “The Analysis of Residuals in
Cross-Classified Tables”, Biometrics, Vol. 29,
No. 1, March 1973, pp. 205-220

Imbernon R., Index your Files – Revolution!,
Malaga (Spain), v 2.6, June 2006

Jibz, Qwerton, snaker, xineohP, PeID, v0.94,
May 2006

Kim S., Tsui K., Borodovsky M., “Multiple
Hypothesis Testing in Large-Scale Contingency
Tables: Inferring Pair-Wise Amino Acid
Patterns in b-sheets”, Journal of Bioinformatics

Research and Applications (Vol 2, No. 2), 2006,
pp.193-217

Kraus, J., Selbstreproduktion bei Programmen,
Universität Dortmund Fachschaft Informatik,
Diplomarbeit (unpublished), Dortmund
(Germany), February 1980, pp.72-94

Kruegel C., Kirda E., Mutz D., Robertson W.,
Vigna G., “Polymorphic Worm Detection Using
Structural Information of Executables”,
Proceedings of the International Symposium on

Recent Advances in Intrusion Detection (RAID),
Seattle (WA), September 2005

Li W., Wang K., Stolfo S., Herzog B.,
“Fileprints: Identifying File Types by n-gram
Analysis”, Proceedings of the 2005 IEEE

Workshop on Information Assurance, USMA
West Point (NY), June 2005

Limpert E., Stahel W., Abbt M., “Log-normal
Distributions across the Sciences: Keys and
Clues”, BioScience (Vol. 51, No. 5), May 2001,
pp. 341–352

Mathworks Inc. and US National Institute of
Standards, JAMA : A Java Matrix Package, v.
1.0.2, Natick (MA) and Gaithersburg (MD), July
2005

Mitzenmacher M., “Dynamic Models for File
Sizes and Double Pareto Distributions”, Internet
Math (Vol. 1, No. 3), 2003, pp. 305–333

Polychronakis M., Anagnostakis K., Markatos
E.P., “Network-level Polymorphic Shellcode
Detection using Emulation”, Proceedings of the
Third Conference on Detection of Intrusions and

Malware & Vulnerability Assessment, Berlin
(Germany), July 2006

Ries C., Automated identification of malicious
code variants, BA CS Honors Thesis
(unpublished) , Colby College (ME), May 2005

Rozinov K., Efficient Static Analysis of

Executables for Detecting Malicious Behaviour,
M.Sc. Thesis (unpublished), Polytechnic
University (NY), May 2005

Porst S., InstructionCounter (IDA plugin), Trier
(Germany), November 2005

Spinellis D., “Reliable identification of
bounded-length viruses is NP complete.”, IEEE
Transactions on Information Theory (Vol 49,
No.1), 2003, pp.280-284

Szor P., The Art of Computer Virus Research

and Defense, Addison-Wesley Professional,
Upper Saddle River (NJ), February 2005

Szor P., Ferrie P., “Hunting for Metamorphic”,
Proceedings of the 11th Virus Bulletin
Conference, Prague (Czech Republic),
September 2001, pp. 123-144

Turing, A., “On computable numbers with an
application to the Entscheidungsproblem “,
Proceedings of the London Math Society (Vol
42, No. 2), 1936, pp. 230–265.

VMWare Inc., VMWare Player, v 1.01, Palo
Alto (CA), December 2005

Weber M., Schmid M., Schatz M., Geyer D.,
“PEAT- A Toolkit for Detecting and Analyzing
Malicious Software”, Proceedings of the 18th
Annual Computer Security Applications

Conference, Washington (DC), December 2002

Wikipedia, X86_instruction_listings, accessed
June 6th, 2006

Woo C., “Cramer’s V”, PlanetMath.org, San
Francisco (CA), April 2005

Yamauchi H., Kanzaki Y., Monden A.,
Nakamura M., and Matsumoto K., “Software
obfuscation from crackers' viewpoint”,
Proceedings of the 2nd IASTED International

Conference on Advances in Computer Science

and Technology, Puerto Vallarta (Mexico),
January 2006, pp. 286-291

Zakon R., Hobbes’ Internet Time Line, v.8.2,
North Conway (NH), November 2006

