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ABSTRACT 
We present a general framework for reasoning about network worms 
and analyzing the potency of worms within a specific network. First, 
we present a discussion of the life cycle of a worm based on a 
survey of contemporary worms. We build on that life cycle by 
developing a relational model that associates worm parameters, 
attributes of the environment, and the subsequent potency of the 
worm. We then provide a worm analytic framework that captures 
the generalized mechanical process a worm goes through while 
moving through a specific environment and its state as it does so. 
The key contribution of this work is a worm analytic framework. 
This framework can be used to evaluate worm potency and develop 
and validate defensive countermeasures and postures in both static 
and dynamic worm conflict. This framework will be implemented in 
a modeling and simulation language in order to evaluate the potency 
of specific worms within an environment.   

Categories and Subject Descriptors 
K.6.5 [Security and Protection]: Invasive Software; C.2.0 
[Computer-Communication Networks]: Security and Protection; 
H.1 [Models and Principles]: Miscellaneous; C.4 [Performance of 
Systems]: Measurement techniques.  

General Terms: Security 

Keywords: Worm, Network Security, Network Modeling, 
Turing Machine 

1. INTRODUCTION 
The last few years have demonstrated that worms are a serious and 
growing threat. Intrusion detection systems (IDS) and the 
procedures supporting intrusion detection and incident response do 
not currently scale to deal with the worm threat. Worm conflict 
across the Internet can be measured in minutes, while worm conflict 
within an enterprise may be measured in seconds. In order to defend 
against the worm threat, technology developers and researchers must 
have a better understanding of the threat, common vocabulary for 
reasoning about the worm threat, and an operational understanding 
of how worms work. Further, having the means whereby developers 
and system defenders can evaluate worm conflict—both the 
offensive and defensive tactics and postures—will enable developers 
to identify requirements for defensive countermeasures and postures 
as well as evaluate those defenses before developing a prototype. It 

will likewise give system defenders a better appreciation of the 
strategic dimensions they have direct control over in worm conflict. 
We present a worm analytic framework to help developers better 
tackle the worm threat. Although some may argue the point that 
providing a framework for evaluating worm potency aids the 
attackers, which it certainly does, we assert that those responsible 
for developing defenses cannot possibly do so without 
understanding the threat. Further, by analyzing the worm algorithm 
and the relationship between worm parameters, the environment, 
and worm potency, developers can better identify defenses that will 
be effective at countering the worm threat.  
This paper is organized as follows. The remainder of Section 1 
covers the related work. Section 2 presents a definition of a worm 
and a description of its life cycle. This section focuses on describing 
the algorithm that worms use to move across a network. We site 
historical examples to illustrate the principles throughout. Section 3 
presents a relational worm model. The potency of a worm is 
dependent on the parameters of the worm and the environment in 
which it operates. The relational worm model is a mathematical 
articulation of the relationship between the parameters of the worm, 
the current state of the environment (including topology and which 
hosts are currently infected), and the subsequent state of the 
environment. The Worm Coverage Transitive Closure (WCTC) is a 
calculation of the final infection set of a worm given an initial state 
of the environment and a parameterized worm. WCTC provides a 
mechanism for evaluating the final state of a network given a worm 
attack in an environment that lacks defenses that can respond within 
the time scale of the worm attack. Section 4 presents a mechanical 
worm model that augments the relational model to account for time 
considerations. A generalized worm algorithm is presented that 
captures the life cycle of a worm and serves as a reference for the 
development of a Turing Machine model of worm state. The model 
can be deterministic or stochastic and allows for discreet reasoning 
about worm conflict. This contribution enables the development of 
requirements for defensive tactics, strategies, and postures, as well 
as validate the impact of implementations in specific worm conflict 
scenarios.  
Section 5 presents representations of some contemporary worms. 
Section 6 presents our conclusions and future work.  

1.1 Related Work 
Fred Cohen was the first to propose a mathematical definition for 
viruses [2] and, later, worms [3]. The English definition of a virus is 
roughly equivalent to “a program that can ‘infect’ other programs by 
modifying them to include a possibly evolved, copy of itself” [2]. 
Using the definition, Cohen proves the point that detecting a virus, 
and subsequently, a worm [3], when data and code are 
interchangeable is undecidable. For the purpose of this paper, we 
characterize viruses and worms as being subsets of a more general 
class of mobile logic. Viruses are the subset of logics contained in 
files that propagate to other files. Worms are the subset of logics that 
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are embodied in processes that can autonomously cause a like 
process to execute on remote hosts. Notice that neither subset 
perfectly describes what are known as email-borne viruses. In this 
paper we focus on worms, although the principles may be general 
enough to help reason about other subclasses of mobile logic.  
Staniford-Chen, et al [4], developed a graph-based policy and 
monitoring capability to detect coordinated behaviors across 
networks. The design included policies whose intention it is to 
detect worm traffic. The work presented in this paper could be used 
to further refine the requirements for such technology. As worm 
conflict is extremely time-sensitive, there may be requirements 
tradeoffs between performance, sensitivity, and accuracy.  
Much work has been performed in analyzing attack graphs and 
representing information systems and their vulnerabilities. The 
previous work focuses on different characteristics whether they be 
operational [5], or software or systems vulnerabilities [6, 7, 8], 
which is a superset of the vulnerabilities a worm might exploit. This 
work models vulnerabilities and exploits in a way that is a proper 
subset of the vulnerabilities of the previous work. Where the 
previous work focuses on any arbitrary threat, this work is focused 
on a specific threat that requires more specific attention.  
Epidemiological studies of viral spread have been provided by [8, 
9], which characterize viruses by their birth rates and death rates 
where machines interact only locally or by sharing disks. Research 
on worm propagation and spread rates is covered at an 
epidemiological scale for hypothetical [11] and historical worms 
[12]. The work referenced speaks to the impact worms can have on 
the Internet. However, they do not capture the mechanics that are 
the source of the potency nor do they provide guidance for 
developing defenses for an enterprise. 
Wang, et al [13], have developed a simulation model that diverges 
from the analytical models with the intention of getting a more 
refined appreciation for the effects of targeting choices by a worm 
and the topology of the target environment. The authors assert that 
analytical models are too course grained and abstract away details 
that are critical to understanding how worms propagate and 
identifying defensive postures and countermeasures. We agree with 
the assertion and seek to further the argument by presenting a more 
complete model of worms and the environments with that purpose 
in mind. They used a simulation model to evaluate the effects of 
randomized and targeted immunization of hosts against two specific 
worms in two types of environments. To do so they model the worm 
(its targeting strategy) and the environment (a description of either a 
hierarchical or clustered topology with hosts that are either 
susceptible, infected, or immune). The worm targeting strategy they 
employ is based on random selection. They differentiate between 
two worms that use this strategy: worms that select only one target 
host at a time, and worms that infect multiple nodes that are 
connected to the infected node at a time. While the model they use is 
more explicit than that used in analytical models, it is not explained 
in sufficient detail to provide a common simulation framework. 
Therefore it is difficult for other researchers to leverage the same 
model to evaluate differing approaches. Further, while they identify 
key components—the environment and the algorithm used by the 
worm—the details of the environment and worm algorithm and the 
relationship between them is overly simplified for a comparative 
analysis of worms or worm defenses. For an example of where 
greater fidelity is desired, their worm algorithm is defined 
exclusively by the targeting strategy. The choice in algorithm can 
significantly impact the performance of the worm. A worm that 
performs reconnaissance activity before attacking behaves and 

performs differently than a worm that attacks without performing 
reconnaissance. For many worms the network latency is a limiting 
factor in spread rate. While the model they developed is adequate to 
reason about network architectures and topologies with greater 
insight than analytical models, a more complete and precise model is 
necessary to more accurately evaluate worm potency. It would also 
be helpful if temporal metrics were included within the model that 
would allow for simulation of dynamism within the environment, 
possibly as a result of active response defenses. Further, by making 
the model more explicit, the same model can be used to compare 
approaches and results across a growing community of interest. 

2. ANATOMY OF A WORM: LIFE CYCLE 
A network worm is defined as a process that can cause a (possibly 
evolved) copy of itself to execute on a remote computational 
machine. (Many of the principles discussed here are also relevant to 
viruses and email-borne viruses, however those similarities are not 
pursued here.) In discussing worms, we often refer to a worm agent 
or instance, a single process running on an infected machine that can 
infect other machines, or a worm collective, the set of all such worm 
agents that share the same logic. When speaking about a worm 
without qualifying, either it is clear from context which is being 
referred to, the principle applies to both agents individually and the 
collective as a whole, or it is a reference to the logic that embodies 
the worm. In this section we provide an informal description of the 
life cycle of worms. We illustrate important features with historical 
examples.  
Each worm agent begins with an Initialization Phase. This phase 
includes things like installing software, determining the 
configuration of the local machine, instantiating global variables, 
and beginning the main worm process. Worms frequently use a 
boot-strap-like process to begin execution. For example, some 
worms need to have code downloaded, configured, or installed 
before the new process can be executed. Following the Initialization 
Phase, the Payload Activation Phase or the Target Acquisition Phase 
can begin.  
Any time following the Initialization Phase the agent can activate its 
payload. The Payload Activation Phase is logically distinct from the 
other phases of the worm life cycle; it does not necessarily affect the 
way the worm spreads through a system from a network perspective, 
however, it may. The Payload Activation Phase is of interest when 
discussing what a worm does to an infected host, or when discussing 
the damage incurred on a host by a particular worm. As the Payload 
Activation Phase does not usually affect the network behavior of the 
worm, it is ignored in an analysis of the network behavior. It is 
possible to construct a payload that significantly affects network 
behavior (e.g., a payload that engages in significant amounts of 
network communication with some other host), or occurs to the 
exclusion of the Network Propagation Phase, the phase that dictates 
how a worm moves through the network. To date, such payloads 
have been rare. Code Red is an example of a payload that occurred 
to the exclusion of network propagation; it propagated for a time 
and then stopped propagating and focused all of its intention on 
executing a distributed denial of service (DDoS) attack on a specific 
machine.  
The Network Propagation Phase is the phase that encompasses the 
behavior that describes how a worm moves through a network and is 
of greatest interest in this paper. In this phase a worm selects a set of 
targets, the Target Set, and tries to infect those target hosts. For each 
host targeted, a sequence of actions is performed over the network in 
an attempt to infect the target host. As in the previously discussed 
phases, variations are possible. But, for the most part, the Target 
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Acquisition, Network Reconnaissance, Attack, and Infection 
subphases, are sufficient descriptions of the actions performed over 
the target hosts. Each of these subphases will be discussed in detail. 
The Target Acquisition Phase describes the process a worm agent 
goes through to select hosts that will be targeted for infection. The 
Target Set is the set of all hosts that will eventually be targeted for 
infection. This set may be a very large set and usually is not 
explicitly encoded in a worm agent. Usually a Target Acquisition 
Function (TAF) is used to enumerate the Target Set and generates a 
linear traversal of targets for the local worm agent. In this case, the 
TAF gives an explicit definition to the Target Set. A common, trivial 
implementation of the TAF is a linear congruence function (e.g., h’ 
= a * h mod n) or other random number generator (RNG). Such a 
TAF generates 32-bit addresses, which are then interpreted as IP 
addresses of the hosts in the Target Set. [11] describes a set of 
generalized TAFs.  
The choice of TAF is significant. The difference between Code Red 
and Code Red v2 was a slight modification to the TAF that had 
significant impact. The former’s TAF was implemented with a linear 
congruence that used the same seed, hence it enumerated the same 
sequence of hosts starting at the same place in the sequence for each 
worm agent. The latter’s TAF simply randomized the seed thereby 
producing distinct sequences altogether.  
Nimda’s TAF was more interesting. The TAF associated higher 
probabilities of generating some IP addresses than others. 50% of 
the time the first 16 bits of the network address were fixed while the 
least significant 16 bits were selected randomly. 25% of the time the 
first 8 bits of the network were fixed while the least significant 24 
bits were select randomly. 25% of the time the entire IP address is 
randomly generated [1]. The effect of this TAF was to localize 
network propagation, possibly with the expectation of having closer 
target hosts. Hosts that are closer in proximity may be more visible 
(there might be fewer filters or firewalls between the hosts) and 
might have an expected smaller network latencies in 
communication. Further, by keeping network traffic localized, less 
traffic must compete for bandwidth through the backbone of the 
network infrastructure.  
The Warhol and Flash Worms are hypothetical worms with 
proposed improvements to the TAF. A Warhol Worm uses 
topologically aware scanning, similar to the description above. A 
Flash Worm uses a priori information in the form of a hit list. That 
is, the Target Set is explicitly enumerated and carried with the 
worm. Various alternative constraints and combinations of 
constraints are possible.  
Contagion worms [11] use a TAF that considers information 
available on the host or that is visible from the host. For example, a 
worm that spreads by way of a peer-to-peer application vulnerability 
may discover the peer’s neighbors from looking at information on 
the local host and subsequently attack them. 
The choice in TAF significantly affects the spread rate of the worm 
and the size of the eventual infection set. Although Staniford et al. 
describe a set of TAFs at a high level, it is clear that there are many 
subtle and strategic considerations within each [11]. Indeed, the 
space of TAFs is rich.  
The Network Reconnaissance Phase is the part of the worm life 
cycle where the worm agent attempts to learn about the 
environment, particularly with respect to the Target Set. Once a 
target has been selected, there is usually no guarantee that such a 
host exists, is visible to the local worm agent, or is even vulnerable. 
(Of course, the TAF may be used to enumerate only hosts that 

satisfy these constraints.) This phase includes validating what a 
worm knows (or, rather, perceives) about the environment and 
enables the worm to make more informed decisions about how to 
operate within the environment. 
There is significant variation in the types of network reconnaissance 
used by conventional worms. Some worms have performed 
network-layer reconnaissance (e.g., a ping sweep), followed by 
transport-layer reconnaissance (e.g., port scanning) [14], or by 
application-layer reconnaissance (e.g., banner grabbing). Other 
worms have done no more than verify that a TCP socket can be 
created with the target host before moving on to the next phase. The 
Slammer worm completely omitted all reconnaissance. For each 
target host a complete packet was created and launched without 
knowing so much as if the target host existed. To date, little 
environmental awareness has been demonstrated despite the 
variations in reconnaissance performed. Perhaps the reason is a lack 
of understanding of the tradeoffs between design decisions.  
The Attack Phase is the phase when the local worm agent performs 
actions over the environment to acquire elevated privileges on a 
remote system. Usually an attack is performed using an exploit, a 
prepared action known to convert the existence of a vulnerability 
into a privilege for the attacking subject. Kuang systems (e.g., U-
Kuang, and NetKuang) have been used to identify complex attack 
paths leveraging either operational or software vulnerabilities. It is 
possible for a worm to use more than one exploit. Such a worm is 
called a multimodal worm. For example, the Morris worm had two 
methods of acquiring privileges on the remote host. The first was a 
buffer overflow in the fingerd service. The second was not 
actually an exploit but the illicit use of legitimate functionality in the 
sendmail service. The set of exploits determines the set of hosts that 
are vulnerable to a particular worm. Worms, on the other hand, 
historically, have used simple, easily automated attacks that require 
very little deviation. 
The Infection Phase is the phase when the local worm leverages the 
acquired privileges on the target host to begin the Initialization 
Phase of a new instance of the worm on the target host. This 
requires that the attacking worm agent possess transferable logic that 
can be executed on the remote host. Although logically distinct from 
the Attack Phase, worm implementations frequently combine the 
two phases. The primary reason is in the nature of vulnerabilities 
and the exploits used to take advantage of them. Many worms to 
date have used buffer overflows as the means of subverting services 
running on remote hosts. Because a buffer overflow allows an 
attacker to immediately execute arbitrary commands at the privilege 
level of the compromised service, the associated exploit can usually 
begin the Infection Phase. 

3. RELATIONAL MODEL AND WORM 
COVERAGE TRANSITIVE CLOSURE  
The Worm Coverage Transitive Closure (WCTC) is the set of all 
hosts that will be infected from the initial worm set. Given a network 
environment and a hypothetical worm, the WCTC can be 
automatically calculated. This section describes the context of the 
calculation and provides an explanation of how that calculation is 
performed. Section 3.1 presents the conditions necessary for 
infection. Section 3.2 presents the relational model that reflects the 
conditions described in Section 3.1 and explains how these relations 
are relevant to both worm agents and worm collectives. Section 3.3 
presents the Worm Coverage Transitive Closure, a calculation 
generating the final state of a network given an initial infection set 
and a static environment.  
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3.1 Conditions For Infection 
Four conditions must be met for some infected host to be able to 
infect an uninfected host. Those conditions can be described in 
terms of targeting, visibility, vulnerability, and infectability. Each 
condition can be described relationally as presented in the following 
subsections. 

3.1.1 Targeting 
A network N is a set of hosts {h1, h2, … , hn} and is partitioned into 
two sets, the set of infected hosts I and the set of uninfected hosts U. 
Each infected host has a target acquisition function (TAF) that 
enumerates the set of targets TS that it will target for attack. An 
infected host must select a host and port, represented as a pair (h2, 
dport), which it will target for attack and subsequent infection. The 
TS represents the set of all host-port pairs that will eventually be 
targeted and the TAF is an iterator over TS. For calculating the 
WCTC, the ordering of elements in TS is not significant. However, 
the order will become significant when we want to reason about the 
timing of events. Each infected host h has its own TS, represented 
as h.TS. An infected host h1, an uninfected host h2, and destination 
port dport are in the TargetedBy relation if (h2,dport) is an element 
of h1.TS.  

3.1.2 Vulnerability 
A host has a set of services and, if infected as a reduced 
representation of the worm, a set of exploits. A service availability 
mapping SAM is a mapping of services to ports and is described as 
a set of tuples {(s1, port1), (s2, port2), .. , (sn, portn)}. If a host h is 
running service s on port port, then (s, port) will be an element of 
h.SAM. An exploit service mapping ESM maps exploits to the 
services against which they are effective (i.e., the exploit acquires 
elevated privileges on the target machine running the vulnerable 
service). Infected host h1, uninfected host h2, and port port are in 
the VulnerableTo relation if there exists an exploit e in h1.ES; (s, 
port) is in h2.SAM; and (e, s) is in ESM.  

3.1.3 Visibility 
A transport visibility mapping TVM is a mapping of one host and 
port onto another host and port that describes what ports on remote 
hosts any particular host can see and is represented as a set of tuples 
{(h1,sport1,h2,dport2), (h3,sport3,h4,dport4), … , 
(hm,sportm,hn,dportn)}. If (hi,sporti,hj,dportj) is in TVM then a 
connection can be made from host hi using source port sporti to 
destination port dportj on host hj. If there exists some source port 
sporti, such that (hi, sporti,hj, dportj) is in TVM, then it can be said 
that hi sees dportj on hj or, more generally, that hi sees hj. 
Equivalently, dportj on hj is visible to hi. A connection, once 
established, represents the ability for information (including exploit 
code) to flow from the source to the destination and vice versa. The 
VisibleTo relation describes the set of destination ports dport2 and 
hosts h2 that are visible to some source port on the viewing host h1 
and is represented as a triplet (h1, h2, dport2).  

3.1.4 Infectability 
The notion of infectability is based on the idea that a worm is a 
process that must be executable (or interpreted) and executed on a 
host for that host to be infected. If the worm cannot execute a copy 
of itself on a host then the host is not infectable; a host that can 
execute the worm process is infectable. An infected host has a set of 
executable types that can be executed on various platforms called 
Execs. If an infected host h1 has a copy of the process that can run 

on execution platform p, then p is an element of h1.Execs. A host 
has a set of execution platforms that it supports called Sup. For an 
uninfected host h2 to be infectable by h1, h1 must have an executable 
that is supported on h2; that is, there must be some executable type p 
that is an element of h1.Execs and h2.Sup. The InfectableBy relation 
is the set of tuples (h1,h2) where some target host h2 supports an 
executable possessed by some infected host h1.  

3.2 Relational Description 
For an uninfected host to become infected there must be an infected 
host where the relationship between the two hosts satisfies all of the 
previously described constraints. Figure 1 presents these 
relationships in relational algebra. A host hu in U gets infected by 
some infected host hi if: hi targets dport on hu, there exists a source 
port on hu that can connect to a dport on hi, dport binds to a 
vulnerable service that hi knows how to exploit, and hi can execute a 
copy of itself on hu. 
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Figure 1 

At any point in time t there is a discrete partition of the hosts in the 
environment into either I or U. Each incremental step in time 
represents a new opportunity for the worm to identify and infect new 
targets. At each step in time, I is augmented by those hosts that are 
targeted by, vulnerable to, visible to, and infectable by some host in 
I. The Infected relation calculates which hosts will be infected at 
time t+1. The relational expressions in Figure 1 can be used to 
calculate the set of newly infected hosts given I, U, and the 
attributes of the worm (i.e., ES, TS, Execs) and environment (i.e., 
SAM, ESM, TVM, Sup).  
Whereas the relational description is discrete, it may prove useful to 
relax that constraint to allow for stochastic relationships. We do not 
provide a stochastic model here, but point out that not all details are 
known in every environment, even from the defender’s perspective. 
Some attributes require very refined details in order to know 
whether or not a relationship holds true. For example, two hosts that 
have the same platform also have the same version of a service 
running. Each service, however, might be running in very different 
application environments. This, in turn, may result in there being 
different offsets for buffers within the services. Although the 
services have the same version, the same buffer overflow will 
probably not work on each as the offset for a buffer overflow is 
fixed. Where describing an environment with perfect precision is not 
feasible, a stochastic adaptation of the relational model may be 
useful.  
The relations described previously and shown in Figure 1 are from 
the perspective of a single worm agent. However, we can generalize 
the relations to reason about the state of the worm collective as 
opposed to the individual worm agents. Whereas TargetedBy, 
VulnerableTo, VisibleTo, and InfectableBy are all defined with 
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respect to a single infected host, each can be relaxed to reason about 
the sets of hosts that are targeted by, vulnerable to, visible to, or 
infectable by some host in I.  
Also some artifacts of the worm collective may allow some of the 
constraints in the relations to be relaxed. For example, for some 
worms, each worm agent contains the exact same exploit. Therefore, 
the constraint in VulnerableTo and InfectedBy that the exploit be in 
hi.ES can be relaxed such that the exploit need only be in (the worm 
collective's) ES. As another example, worms commonly infect only 
a homogenous execution platform. Therefore, the constraint in 
InfectableBy that the type of the local worm be supported by a target 
host can be relaxed so that the type is an attribute of the worm 
generally, and not a specific host.  

3.3 Worm Coverage Transitive Closure 
The WCTC is a calculation of the final set of infected hosts given an 
environment and initial set of infected hosts, I. The process for 
calculating the WCTC is to augment I until no more hosts can be 
added. 

In Figure 2, Infected() refers to the calculation of the Infected 
relation in Figure 1 at any instance in time.  
The relations in Figure 1 make explicit the parameters of worm 
infection. The worm author has control over some of these, while 
the defender (and network administrator) has control over others. 
The worm author controls the Exploit Set, Target Acquisition 
Function (TAF), and the set of executable formats that the worm has 
dispose of. The defender has control over visibility, vulnerability, 
and platform support. These are the strategic dimensions that each 
side can modify to enhance their respective force in worm conflict. 
The relations can be used to pose a hypothetical worm, 
environment, and initial conditions, and evaluate the outcome of the 
subsequent static worm conflict, the worm attack in the absence of 
defensive countermeasures. While the relations above point to a 
deterministic world view, it is possible to relax the relations to be 
stochastic in nature. For example, it may be desirable to succinctly 
and imprecisely represent the Target Set where hosts are added 
probabilistically. Also, where visibility may be sensitive to network 
congestion and exploits sensitive to the state of a vulnerability, 
stochastic measures may be useful instead of modeling the precise 
state of the network or a service. 

 
Figure 2 

4. WORM STATE 
In this section we provide a generalized worm algorithm that makes 
explicit the actions performed that evaluate the compliance with the 
relational model of the previous section. Using the generalized 

worm algorithm as a reference point we present a way to model the 
state of a worm using simple computational mechanics. We show 
that worms are Turing Machines whose state can be simply 
represented. A worm operates over target hosts in a way such that 
the each target host can be represented as a simple state machine. 
For each target host, the worm can be said to create a state machine 
and maintain the state of the target host as the worm operates over 
the environment with respect to that particular target host. The state 
of the worm is the aggregate of all the states of the target hosts.  
In Section 4.1 we present the generalized worm algorithm. In 
Section 4.2 we present a state machine model to model the process a 
worm goes through in attacking a single host. In Section 4.3 we use 
a Turing Machine model to describe the (perceived) state of the 
worm as it operates over many target hosts. We simplify the 
representation of the (perceived) state of the worm to a tuple of sets 
that include temporal semantics. In Section 4.4 we use the same 
Turing Machine model to describe the actual state of a worm within 
its environment. In Section 4.5 we provide the temporally extended 
set, which can be used to calculate the potency of a worm in 
dynamic worm conflict. In Section 4.6 we show how to represent 
the state of a worm collective. We then extend this model to express 
temporal properties that can be used to quantify the length of the 
conflict.  

4.1 General Worm Algorithm 
The generalized worm algorithm shown in Figure 3 shows the basic 
process all worms go through. For each target host h a process to 
learn about it, exploit it, and infect it, goes until no further progress 
can be made. The algorithm may be sequential or concurrent across 
target hosts but is only sequential with respect to a single target host.  
 

 
Figure 3 

Each of the function calls in the pseudo code above represents an 
action performed over the environment to either learn about it or 
affect it. Included in each function call is an action executed over the 
environment and the processing of the return values (if any). In the 
function, if the return value does not satisfy the (possibly implicitly 
and trivially satisfiable) constraints for moving the target host into 
the next set, the target host is removed from the sets and the next 
target host is processed. The logical moving of the target host into 
the next set for further processing is usually implicit in the 
algorithm.  
Figure 4 pictographically describes the path of a target host as it is 
processed throughout the worm algorithm. All target hosts are 
initially a member of TS. Based on the return value of some 
transition performed on the environment, each target host h is either 
moved into VIS or the Fail set (hereafter the Fail Set will be treated 
implicitly). The transition is defined in the function CheckVIS in the 

Start: 
    h = TAF( ) ; #enumerate TS 
    checkVIS( h ) ; if( h not in VIS ) goto Start ; 
    Exploit e = checkVULN( h ) ; if( h not in VULN ) goto Start ;
    aquirePrivs( h , e ) ; if( h not in AS ) goto Start ; 
    infect( h ) ; if( h not in IS ) goto Start ; 
    goto Start ; 

Worm Coverage Transitive Closure 
(WCTC) 
I : InfectedSet 

do { 
 oldsize  size( I )  
 I  I U Infected( )  
} while( size( I ) ≥ oldsize ) 
return I  
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pseudo code. An example transition might be to send an ICMP Echo 
Request message to the target host and evaluate the response. If an 
ICMP Echo Reply is returned before the timeout period occurs, 
move h into the next set to be further processed. Otherwise, discard 
h (i.e., move it to the Fail set). Likewise, each h is moved from one 
set to the next in the worm algorithm until it reaches the final set, IS, 
or it is discarded. 
 
 
 
 
 
 

Figure 4 

4.2 Modeling Target Host State 
A target host can be modeled as a state machine. The states of the 
target host are S = {TS, VIS, VULN, AS, IS, FAIL}, meaning that 
the target host is in the worm agent’s Target Set, Visible Set, 
Vulnerable Set, Attack Set, Infection Set, and no set, respectively. 
The start state S0 = {TS}. The final states are SF = {FAIL, INF}, 
where INF is the accept state. The alphabet is Σ = {TRUE, FALSE}. 
The state transition mapping provides an ordering over the states. 
The states are linearly reached, excepting the FAIL state: ∂ = TS x 
TRUE  VIS, VIS x TRUE  VULN, VULN x TRUE  AS, AS 
x TRUE  IS. From any state on a FALSE, the transition is to 
move to the FAIL state. The state machine model of the target host 
can reflect either the worm's perspective of the target host's state or 
the actual state of the target host. This state machine model makes 
explicit the process that a worm goes through in learning about 
targets and determining what can be done over (or to) that host.  

4.3 Model For Perceived Worm State 
The state of a worm agent is described by a tuple of sets: <TS, VIS, 
VULN, AS, IS, FAIL>. Each set contains target hosts whose current 
state is the name of the respective worm set. That is, all target hosts 
that are (represented in the worm as being) in state TS are in the TS 
set of the worm, all target hosts in state VIS are in the worm set VIS, 
and so forth. In most instances of worm agents, a target host is in at 
most one set at a time, such that the tuple of sets is itself a set and 
the subsets are partitions of the complete set.  
Some worms deviate on the number and sequence of states by 
omitting actions and decisions thereby combining adjacent states. 
Logically, aggregations of states do not affect the relative ordering 
of states. A transition from one state to the next is only necessary if 
an action is performed on the environment whose effect is used in 
making a decision as to how to proceed. For example, it is common 
for worms to not check whether an attack was effective before 
attempting infection. This is usually the case with worms that use 
buffer overflows as the exploit and infection mechanism where, as 
discussed previously, a single, atomic action can accomplish both. 
In some cases, several states are combined into one. In such a case, 
the AS state and IS state are combined and the transition to it is the 
value of the effect performed on the transition from the previous 
state, VIS. The Slammer Worm is another example where states are 
aggregated. Slammer did not check for visibility, vulnerability, 
attackability, or infectability before launching a single packet that 
did all of those in one step. In this case, there were only two states in 
the linear process, TS and IS. 

Figure 5 shows the state of a worm that has chosen to target hosts 
h1.. h8. h1 and h5 have been determined to not be infectable for some 
reason and are ignored. h2 has been successfully infected. Privileges 
have been acquired on h3 via some attack, but it has not yet been 
infected. h4 has been determined to be vulnerable to some exploit 
possessed by the worm agent. h6 and h7 are both visible to the worm 
agent. Nothing can be said about h8 at this time, other than that the 
worm agent is targeting it.  
 
 
 
 
 
 
 

Figure 5 
Each action performed with respect to a single target host is totally 
ordered and is defined by the particular implementation of the 
worm. However, actions performed across target hosts may or may 
not be totally ordered. A worm agent may be multithreaded or have 
some other design that allows concurrent processing of various 
targets. By augmenting the model with the notion of absolute time, a 
total ordering can be applied to the transitions performed. Each 
transition is annotated with a duration time. If the transitions can be 
concurrent across target hosts, then the transition is also annotated 
with a rate. These times may be dictated by resource constraints (i.e., 
processing time, network bandwidth, etc.) or logical constraints (i.e., 
flow control established by the worm author). For example, a ping 
action may start at time t and complete at time t + 30 (in units of 
milliseconds) if happening alone or t + 60 if happening in the 
presence of several other pings. Likewise, pings might be sent 
concurrently at a rate of 1000 times per second, for example. A 
vulnerability scan might be in the range of milliseconds to seconds 
depending on the scan. Another type of constraint might be how 
many can be outstanding at a single time. A worm agent may not be 
able to support more than 256 TCP connections at any one time. By 
accounting for these resource and logical constraints in the model, 
we can describe the behavior of a worm with respect to time. Also, 
any initialization time can also be accounted for in the extended 
worm set. 
A worm agent changes state by continuing the worm algorithm with 
respect to some target host, evaluating the effects of the behavior 
initiated, and reflectively advancing the state of the target host and 
subsequently its own state. It should be noted here that a worm may 
assume that a transition was effective when, in reality, the transition 
failed. The state of the worm, therefore, is a reflection of the worm’s 
perception of the environment and not the actual state of the 
environment. We call this the perceived state of the worm as it is the 
worm’s perception of reality. Erroneous evaluations of the 
effectiveness of transitions leads to inconsistency between the state 
of the environment as the perceived state of the worm and the actual 
state of the worm. Therefore, it is important to distinguish between 
the worm’s perceived state from the worm’s actual state.  

4.4 Model For Actual Worm State 
The difference between the Turing Machine that represents the 
worm’s perceived state and the Turing Machine that represents the 
worm’s actual state is that the worm’s actual state reflects the actual 
state of the environment as the worm would perceive it if it had 
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perfect knowledge. Whereas the perceived state of a worm reflects 
the state of the environment as the worm perceives it, the actual state 
of a worm reflects those attributes in the environment that are 
relevant to the worm algorithm and are grounded in truth.  Such an 
idealistic machine is useful in predicting the potency of the 
represented worm in a specific environment in a simulation. 
Because the state of the Turing Machine is a tuple of states, where 
target hosts move from one state to the next, we can represent the 
logic of a worm with temporally extended sets. Temporally extended 
sets are sets where the relational expression holds true over the 
respective sets and an element from one set can move to the next set 
of the next relational expression is true according to the temporal 
requirements that separate the sets.  

4.5 Temporally Extended Worm Sets 
In the following sample extended worm set D represents duration of 
time it takes for transition to take place and R represents the rate at 
which transitions can take place. Both parameters refer to the 
preceding transition (except for the initialization). The specific 
values for D and R may vary according to the environment and 
infected host. Representing the times as functions of the 
environment, therefore, will provide greater fidelity. Time units are 
omitted. Parenthetical statements are comments explaining the line. 
Curly braces contain the logic of the worm sets and are in set 
theoretic notation. For brevity only the new constraints placed at 
each transition are presented (all previous constraints are also 
necessarily true). 
 D: 0.5 (Initialization takes half a time unit) 
TS = {h | h = (h0 * a + b) mod n, for some constants a, b, n, and where h0 is 
the value of the previous iteration} 
 D: 0.0 (The calculation is practically immediate) 
 R: 0.0001 (10000 targets enumerated per unit time) 
VIS = {h | TCP connect to host h:80 returns TRUE} 
 D: 0.03 (The time for a TCP connection setup) 
 R: 0.01 (100 targets can be pinged per time unit) 
VULN/AS = {h | IIS exploit on h is successful and acquires elevated 
privileges, the TCP session with h is still valid} 
 D: 0.03 ,  R: 0.05 
IS = {h | the commands to download, install, and execute worm code 
succeed} 
 D: 1.0 , R: 0.05 

In the example above, the algorithm is concurrent. The Vulnerability 
and Attack Sets are combined because there is no effort to determine 
vulnerability before attacking. The worm’s perceived extended sets 
would be similar, where the relational constraints would reflect the 
worm’s perception.  
The temporally extended worm sets can be used to evaluate not only 
the potency of a worm in terms of its infection set, but also in terms 
of its performance within a network. This also allows for 
determining the effects of countermeasures imposed by a defender. 
Therefore the contribution of the Turing Machine model of worms 
and the subsequent temporally extended worm sets is the ability to 
evaluate the outcomes of dynamic worm conflict.  

4.6 Worm Collective State 
The state of the worm collective can be modeled as a Turing 
Machine with the same sets as a worm agent. Informally, the state of 
the worm collective can be represented as the superset of each of the 
worm sets of the individual worm agents. That is, the target set of 
the collective TS’ = TS1 U TS2 U … U TSn, where TSi is the ith 
worm agent in the collective, and so forth for the other sets. This is 

true for both the worm collective’s perceived state and the worm 
collective’s actual state.  
The formulation of the worm algorithm, the worm sets, and worm 
state above, allowing some permutations, is sufficiently general to 
assist in discreet temporal reasoning about network worms. While 
the previous section provided the tools to reason about worms in a 
static environment, this section presented tools that enable the 
development of rich simulations that capture metrics of potency and 
the temporal aspects of such behavior. We assert that the modeling 
framework described above provides generality and richness in 
reasoning about the network worm threat. In support of this claim 
we provide the representations of a handful of worms in the next 
section. 

5. REPRESENTATIONS OF 
CONTEMPORARY WORMS 
In this section, we provide the worm algorithm and extended worm 
sets for a handful of contemporary worms. The following worms 
will be discussed in this section: Lion Worm, Code Red (the 
original), Code Red II (a.k.a. CRvII), and Slammer (a.k.a. Sapphire). 
Worm implementations can be arbitrarily complex. For each of 
these worms we argue that the worm sets and worm algorithm are a 
succinct and sufficiently correct representation of the worm to 
evaluate its potency in a specific network.  

5.1 Lion Worm 
An analysis of the Lion Worm’s algorithm can be found at [15]. The 
analysis provides a process flowchart for instances of the Lion 
Worm. We provide the source code for this first example to better 
show relationship to the worm algorithm. The worm is essentially 
encoded into two threaded subprocesses: scan.sh and hack.sh with a 
file called bindname.log as the communication medium between 
them. Data flows unidirectionally from scan.sh to hack.sh. (The 
other two subprocesses [1i0n.sh and star.sh] are control processes 
and only affect the local machine and not the worm sets or 
algorithm). The two relevant subprocesses are provided below in C-
like pseudo code. 
 
The pseudocode for the Lion Worm that follows is simply a 
reduction of the original source code (scan.sh and hack.sh), 
modified for readability. Tabs are used to indicate scope. 

scan.sh 
    forever 
        h = TAF( ) ; # TS = the enumeration of randb( ); 
        If( TCP_Connect( h , 53 ) ) # attempt connect to h on port 53 
            write h to bindname.log ; 
 

hack.sh 
    forever 
        get last 10 t from bindname.log #possible lapses and repeats 
        foreach h do  
            foreach exploit do {#note, there was only one exploit 
                if( TCP_Connect( h , 53 ) )#this is the one exploit 
                    attack t with bindx.sh  ;  
                    execute "lynx -source http://207.181.140.2:27374 \ 
                                   > 1i0n.tar;./lion"  
These two processes can be represented as a single linear process 
over hosts without loss of correctness since the hosts are indeed 
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processed in hack.sh linearly.  The linear process is the Lion-specific 
worm algorithm. The Lion Worm Algorithm follows. The 
concurrent implementation decouples the checks for visibility and 
vulnerability from the attack and infection. 
The Lion Worm algorithm is succinctly described as: 
forever 
    h = TAF( ) ;     # TAF 
    if( !TCP_Connect( h , 53 ) ) continue ; # VIS/VULN 
        foreach exploit in ES do 
            attack h with exploit ;  # AS 
            download 1i0n to h from 207.181.140.2:27374 using lynx; 
            execute 1i0n   # IS 
 
The Lion Worm algorithm is a constrained version of the general 
worm algorithm. The TAF is constrained to target only values in the 
enumeration of randb (the exact algorithm for randb is not 
provided). The checks for visibility and vulnerability are performed 
in one operation and returns TRUE whenever the target host has a 
visible service running on TCP port 53. There is only one exploit 
used to attack, and it is used against every visible target. The 
infection phase occurs immediately after the attack using the remote 
root shell (the result of an effective bindx.sh attack) to get the target 
machine to download the worm code and execute it.  
The Lion Worm Sets can be extracted from the Lion Worm 
algorithm. The Target Set is simply an enumeration of all hosts 
generated by randb. Since there is only one action whose effect is to 
identify a visible and/or vulnerable host, the Visibility and 
Vulnerability Sets contain the same hosts and are, therefore, the 
same set. Note also that there is no control flow separating the attack 
from the infection attempt. Although the two processes are distinct 
in the algorithm and logically different, the Lion Worm Algorithm 
does not have any check to see if the attack was successful before 
moving on the infection attempt. The affects of this decision are that 
the infection is attempted against machines indiscriminately for 
which a TCP connection was established, regardless of the 
effectiveness of the attack. Although there may be a difference 
between the number of hosts that are effectively attacked and the 
number of hosts that are infected (e.g., if there are vulnerable hosts 
that don’t have lynx installed), the state of the worm is not reflected 
by the distinction. The Lion Worm sets are: 
TS = { h | h is generated by randb } 
VIS/VULN = { h | h in TS, h:TCP/53 is visible to localhost } 
AS = {h | h in VIS/VULN, and h runs a vulnerable version of bind } 
IS = { h | h in AS, lynx is installed and executable, 207.181.140.2:27374 is 
visible to h, 1i0n can be installed and executed} 

Given an initial infection set and an environment the sets above 
could be used to generate the subsequent Worm Coverage Transitive 
Closure. The Lion Worm extended sets follow. (The time units are 
for illustrative purposes only and are probably not accurate, 
although the logic is correct.)  
 
 D: 0.0 (Time to initialization) 
TS = { h | h is generated by randb } 
 D: 0.0 (Time to generate h) 
 R: 0.001 (1000 targets can be generated per unit time) 
VIS/VULN = { h | h in TS, h:TCP/53 is visible to localhost } 
 D: 2.5 * RTT (Time to open and close TCP connection) 
AS = {h | h in VIS/VULN, and h runs a vulnerable bind  service} 
 D: 2.5 * RTT (Setup TCP connection and run exploit) 

IS = { h | h in AS, lynx is installed and executable, 207.181.140.2:27374 is 
visible to h, 1i0n can be installed and executed} 
 D: 3.5 * RTT + 0.1 (Time to issue command to download, 
install, and execute worm code) 

The RTT refers to the round-trip time (RTT) of a pair of hosts in a 
network. This representation is sufficient for calculating the spread 
rate and other time-relevant metrics for the Lion Worm. 

5.2 Code Red I 
The Code Red I extended worm sets are provided here and are 
derived from an analysis of Code Red I by eEye (http:// 
www.eeye.com/html/Research/Advisories/AL20010717.html). One 
interesting feature of this worm is the modification to the 
performance of the loop based on local information. During 
initialization, the worm checks the infected machine’s locale. If the 
locale is English, twice as many threads are spawned (300) as there 
are if the locale is Chinese (150).  
Initialize: 
 D: 0.0 (Check to see if local host is infected) 
 R: 300 (English locale) or 150 (Chinese locale) 
 Populate TS: D(insignificant) 
TS = {h | h generated by rand( fixed_seed )}, thus TS is an ordered list that 
and is the same across all worm agents 
 D: 1.5 * RTT (TCP connection setup) 
VIS/VULN = {h | h in TS, and TCP_Connect with h succeeded} 
 D: 0.5 * RTT (Send HTTP_GET_Exploit) 
AS= {h | h in VIS/VULN, and HTTP_GET_Exploit connection succeeded} 
 D: 0.5 * RTT (Receive response to exploit) 
IS = {h | h in VIS/VULN, and Receive_Return_GET} 
 D: 0.01 (The time it takes to execute) 

 
One interesting point about this worm is the choice of a fixed seed 
for the TAF. Subsequently, every instance of this worm targets the 
exact same sequence of hosts in the exact same order. Effectively, 
only one infected machine infects other machines.  

5.3 Code Red II 
The Code Red II extended worm sets are provided here and are 
derived from an analysis of Code Red II by eEye (http:// 
www.eeye.com/html/Research/Advisories/AL20010804.html).  
Initialize:  
 D: 0.0 (Check to see if local host is infected) 
 R: 300 (English locale) or 150 (Chinese locale) 
TS = {h | h has address X.Y where X is the same netmask as the local host, 
|X|+|Y|=32, and |X| follows this probability distribution (|X|,P): (0, 0.125), (8, 
0.50), (16, 0.375), and X.Y != 127.* or 224.* 
 D: 1.5 * RTT (Set up TCP connection) 
VIS/VULN = {h | h in TS, and TCP_Connect with h succeeded} 
 D: 0.5 * RTT (Send HTTP_GET_Exploit) 
AS/IS= {h | h in VIS/VULN, and HTTP_GET_Exploit connection 
succeeded} 
 D: 0.1 + 1.0 * RTT (Time to install, execute worm code plus 
time to tear down TCP connection) 

5.4 Slammer/Sapphire 
The pseudo code for Slammer is as follows. 
forever 
    T = TAF( ) ;   #uses linear congruence               # TAF 
    create UDP packet to T on port 1434 with exploit; #VIS/VULN/AS/IS 

The Slammer Worm algorithm is different from the previous 
examples as it does not place any constraints on the targets. Also, as 
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the vulnerable service being targeted is UDP-based, there is no 
overhead associated with creating a session. The result is a compact 
worm that spreads quickly and targets many hosts that either do not 
exist or are not vulnerable. The extended worm sets are as follows. 
 D: 0.0 (Initialization time is inconsequential) 
TS = { h | h is generated by one of the linear congruences  
    h' = (h * 214013 – (0xffd9613c XOR 0x77f8313c) ) mod 2^32  
    h' = (h * 214013 – (0xffd9613c XOR 0x77e89b18) ) mod 2^32  
    h' = (h * 214013 – (0xffd9613c XOR 0x77ea094c) ) mod 2^32  
    h0 is produced by getTick( ) from the Windows API } 
 R: bandwidth/376 bytes 
VIS/VULN/AS/IS = { h | h in TS, h.UDP/1434 is visible to localhost, h runs 
Microsoft SQL Server 2000 or MSDE 2000, h runs the Windows operating 
system } 
 D: 0.0 (creating and sending a packet are relatively immediate) 

The linear congruences in TS are described in 
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html. 
The linear congruences have not been verified by the authors of this 
paper.  
From looking at the time annotated worm sets for Slammer, it is 
clear that it will spread much more quickly than previous worms 
given the same vulnerability density and topology. The benefit in 
using UDP (greatly reduced latency between hosts). Also, it makes 
the attacks concurrent, being limited only by the bandwidth 
available to the host. 

6. CONCLUSIONS & FUTURE WORK 
In this paper we have presented a description of network worms. We 
have provided a relational model that describes the relationship 
between a worm’s parameters, the environment, and the worm’s 
potency. The Worm Coverage Transitive Closure (WCTC) is a 
computation of a worm’s final infection set given its parameters and 
operating environment. Based on current defensive technology, the 
WCTC is adequate to describe a worm’s potency with respect to a 
particular environment because there are no defensive 
countermeasures that respond within the time scale of most worm 
conflicts. We also present a generalized worm algorithm and a 
model for worm state that can be used to succinctly capture the 
germane attributes of a worm that affect its potency. The model can 
be used to develop simulations for evaluating the temporal aspects 
of worm potency as well as evaluate the effects of modifications to 
defensive tactics and postures. As this model clearly defines what 
parameters affect worm potency, we expect it will be a useful tool 
for identifying and evaluating defensive tactics and postures for both 
static and dynamic worm conflict.  
We are currently implementing this model in the EASEL modeling 
and simulation environment. We will use that model to evaluate 
worm detection and response capabilities.  
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